AVL树及其模拟实现

1.AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  1. 它的左右子树都是AVL树
  2. 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

在这里插入图片描述

上图的树中,对于值为(5)的节点,它的左子树高度为3,右子树高度为3。平衡因子则为0;对于值为(3)的节点,它的左子树高度为2,右子树高度为1。平衡因子则为-1;同理对于值为(7)的节点,它的左子树高度为1,右子树高度为2,平衡因子则为1。

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O(log2n),搜索时间复杂度O(log2n)。

2.AVL树节点的定义

template<class T>
struct AVLTreeNode
{
	 AVLTreeNode(const T& data)
 	 : _pLeft(nullptr)
   	 , _pRight(nullptr)
 	 , _pParent(nullptr)
	 , _data(data)
	 , _bf(0)
	 {}
	 AVLTreeNode<T>* _pLeft; // 该节点的左孩子
 	 AVLTreeNode<T>* _pRight; // 该节点的右孩子
	 AVLTreeNode<T>* _pParent; // 该节点的双亲
	 T _data;
 	 int _bf; // 该节点的平衡因子
};

3.AVL树的插入

template<class T>
class AVLTree {
public:
	typedef AVLTreeNode<T> Node;
	typedef Node* PNode;
	AVLTree()
		:_pRoot(nullptr)
	{}
	bool insert(const T& val);//插入
	void RotateR(PNode parent);//右旋
	void RotateL(PNode parent);//左旋
	

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点

bool Insert(const T& data) {
        // 1. 先按照二叉搜索树的规则将节点插入到AVL树中
        if (nullptr == _pRoot) {
            _pRoot = new Node(data);
            return true;
        }
        // 按照二叉搜索树的性质找data在AVL中的插入位置
        PNode pCur = _pRoot;
        PNode pParent = nullptr;
        while (pCur) {
            pParent = pCur;
            if (data < pCur->_data)
                pCur = pCur->_pLeft;
            else if (data > pCur->_data)
                pCur = pCur->_data;
            else
                return false; // 该节点在二叉搜索树中存在
        }
        // 插入新节点:新节点一定插入在pParent的左侧或者右侧
        if (data < pParent->_data)
            pParent->_pLeft = pCur;
        else
            pParent->_pRight = pCur;
        // 更新pCur的双亲节点
        pCur->_pParent = pParent;

        // 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性

        /*
        pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
        的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
        1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
        2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可

        此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
        3. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,
           插入后被调整成0,此时满足AVL树的性质,插入成功
        4. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,
           插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
        6. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理
        */
        while (pParent) {
            // 更新双亲的平衡因子
            if (pParent->_pLeft == pCur)
                pParent->_bf--;
            else
                pParent->_bf++;
            // 更新后检测双亲的平衡因子
            if (pParent->_bf == 0)
                break;
            else if (pParent->_bf == 1 || pParent->_bf == -1) {
                // 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树
                // 的高度增加了一层,因此需要继续向上调整
                pCur = pParent;
                pParent = pCur->_pParent;
            }
            else if (pParent->_bf == 2 || pParent->_bf == -2) {
                //双亲的平衡因子为正负2,违反了AVL树的平衡性,
                //需要对以pParent为根的树进行旋转处理
                if (pParent->_bf == 2 && pCur->_bf == 1) {
                    //右边的右边高,左旋
                    _RotateL(pParent);
                }
                else if (pParent->_bf == -2 && pCur->_bf == -1) {
                    //左边的左边高,右旋
                    _RotateR(pParent);
                }
                else if (pParent->_bf == 2 && pCur->_bf == -1) {
                    //右边的左边高,右左旋
                    _RotateRL(pParent);
                }
                else if (pParent->_bf == -2 && pCur->_bf == 1) {
                    //左边的右边高,左右旋
                    _RotateLR(pParent);
                }
            }
            break;
        }
        return true;
    }

在这里插入图片描述

4.AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种。

4.1右单旋

在这里插入图片描述
新节点插入较高左子树的左侧。在插入前,AVL树是平衡的,新节点插入到 30 的左子树(注意此处不是左孩子)中,30 左子树增加了一层,导致以 60 为根的二叉树不平衡,要让 60 平衡,只能将 60 左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样 60 转下来,因为 6030 大,只能将其放在 30 的右子树,而如果 30 有右子树,右子树根的值一定大于30 ,小于 60 ,只能将其放在 60 的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:

  1. 30 节点的右孩子可能存在,也可能不存在
  2. 60 可能是根节点,也可能是子树
    如果是根节点,旋转完成后,要更新根节点
    如果是子树,可能是某个节点的左子树,也可能是右子树
    //右单旋:
    void _RotateR(PNode pParent){
        // pSubL: pParent的左孩子
        // pSubLR: pParent左孩子的右孩子
        PNode pSubL = pParent->_pLeft;
        PNode pSubLR = pSubL->_pRight;

        // 旋转完成之后,pParent左孩子的右孩子 作为 pParent的左孩子
        pParent->_pLeft = pSubLR;
        // 如果pSubLR存在,更新其双亲为pParent
        if (pSubLR)
            pSubLR->_pParent = pParent;
        //pParent作为pSubL的右孩子
        pSubL->_pRight = pParent;

        // pParent可能是棵子树,因此在更新其双亲前必须先保存双亲
        PNode pPParent = pParent->_pParent;
        // 更新双亲
        pParent->_pParent = pSubL;

        // 更新pSubL的双亲
        pSubL->_pParent = pPParent;

        // 如果pParent是根节点,根新指向根节点的指针
        if (NULL == pPParent){
            _pRoot = pSubL;
            pSubL->_pParent = NULL;
        }
        else {
        // 如果pParent是子树,可能是其双亲的左子树,也可能是右子树
        if (pPParent->_pLeft == pParent)
             pPParent->_pLeft = pSubL;
        else
             pPParent->_pRight = pSubL;
        }
        // 根据调整后的结构更新部分节点的平衡因子
        pParent->_bf = pSubL->_bf = 0;  
    }

4.2左单旋

在这里插入图片描述
新节点插入较高右子树的右侧,实际即考虑情况与右单旋类似。

    //左单旋
    void _RotateL(PNode pParent) {
        // pSubR: pParent的右孩子
        // pSubRL: pParent右孩子的左孩子
        PNode pSubR = pParent->_pRight;
        PNode pSubRL = SubR->_pLeft;


        // 旋转完成之后,pParent右孩子的左孩子 作为 pParent的右孩子
        pParent->_pRight = pSubRL;
        // 如果pSubRL存在,更新其双亲为pParent
        if (pSubRL)
            pSubRL->_pParent = pParent;
        //pParent作为pSubR的左孩子
        pSubR->_pLeft = pParent;

        // pParent可能是棵子树,因此在更新其双亲前必须先保存双亲
        PNode pPParent = pParent->_pParent;
        // 更新双亲
        pParent->_pParent = pSubR;

        // 更新pSubR的双亲
        pSubR->_pParent = pPParent;

        // 如果pParent是根节点,根新指向根节点的指针
        if (NULL == pPParent) {
            _pRoot = pSubR;
            pSubR->_pParent = NULL;
        }
        else {
            // 如果pParent是子树,可能是其双亲的左子树,也可能是右子树
            if (pPParent->_pLeft == pParent)
                pPParent->_pLeft = pSubR;
            else
                pPParent->_pRight = pSubR;
        }
        // 根据调整后的结构更新部分节点的平衡因子
        pParent->_bf = pSubR->_bf = 0;
    }

4.3先左单旋再右单旋

在这里插入图片描述
将双旋变成单旋后再旋转,即:先对 30 进行左单旋,然后再对 90 进行右单旋,旋转完成后再考虑平衡因子的更新。

    //左右旋: 新节点插入较高左子树的右侧  先左单旋再右单旋
    void _RotateLR(PNode pParent) {
        PNode pSubL = pParent->_pLeft;
        PNode pSubLR = pSubL->_pRight;

        // 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子
        int bf = pSubLR->_bf;

        // 先进行左单旋
        _RotateL(pParent->_pLeft);

        // 再进行右单旋
        _RotateR(pParent);
        if (bf == 1)
            pSubL->_bf = -1;    
        else if (bf == -1)
            pParent->_bf = 1;
    }

4.4先右单旋再左单旋

在这里插入图片描述

    //右左旋:新节点插入较高右子树的左侧  先右单旋再左单旋
    void _RotateRL(PNode pParent) {
        PNode pSubR = pParent->_pRight;
        PNode pSubRL = pSubR->_pLeft;

        // 旋转之前,保存pSubRL的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子
        int bf = pSubRL->_bf;

        // 先进行右单旋
        _RotateR(pParent->_pRight);

        // 再进行右单旋
        _RotateL(pParent);
        if (bf == 1)
            pParent->_bf = -1;
        else if (bf == -1)
            pSubR = 1;
    }

总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
  • 当pSubR的平衡因子为1时,执行左单旋
  • 当pSubR的平衡因子为-1时,执行右左双旋
  1. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
  • 当pSubL的平衡因子为-1是,执行右单旋
  • 当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

5.AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  2. 验证其为平衡树
  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确
    int _Height(PNode pRoot)
    {
        if (nullptr == pRoot)
            return 0;
        // 计算pRoot左右子树的高度
        int leftHeight = _Height(pRoot->_pLeft);
        int rightHeight = _Height(pRoot->_pRight);
        // 返回左右子树中较高的子树高度+1
        return (leftHeight > rightHeight) ? (leftHeight + 1) : (rightHeight + 1);
    }
    bool _IsBalanceTree(PNode pRoot)
    {
        // 空树也是AVL树
        if (nullptr == pRoot)
            return true;
        // 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
        int leftHeight = _Height(pRoot->_pLeft);
        int rightHeight = _Height(pRoot->_pRight);
        int diff = rightHeight - leftHeight;
        // 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
        // pRoot平衡因子的绝对值超过1,则一定不是AVL树
        if (diff != pRoot->_bf || (diff > 1 || diff < -1))
            return false;
        // pRoot的左和右如果都是AVL树,则该树一定是AVL树
        return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot->_pRight);
    }

6.AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即log2N 。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值