自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 Bigtable: a distributed storage system for structured data论文阅读

一个Bigtable集群是运行Bigtable软件的一组进程。每个集群为一组表提供服务。在Bigtable中,一个表是一个稀疏的、分布式的、持久化的多维排序映射。数据被组织成三个维度:行、列和时间戳。我们将由特定行键、列键和时间戳引用的存储称为单元格(cell)。行被分组在一起形成负载均衡的单位(分组结果称为Tablet),列被分组在一起形成访问控制和资源计量的单位(分组结果称为column family)。

2023-05-24 18:23:23 447

翻译 Understanding Database Sharding

任何一个应用程序或网站如果获得了显著的增长,最终都需要进行扩展以适应流量的增加。对于数据驱动的应用程序和网站,保证扩展的方式能够确保数据的安全和完整性至关重要。很难预测一个网站或应用程序会变得多么受欢迎或它会保持多久的受欢迎程度,这就是为什么一些组织选择一种数据库架构,使它们能够动态地扩展其数据库。在这篇概念性文章中,我们将讨论一种数据库架构:分片数据库。近年来,分片技术受到了很多关注,但是许多人并不清楚它是什么以及在哪些情况下对数据库进行分片是有意义的。

2023-05-10 16:03:23 143

原创 6.824-Distributed Transactions

Mit6.824 2020第12个lec要求阅读书籍内容的翻译+个人理解

2023-05-09 15:43:28 205

原创 Frangipani论文阅读总结

Frangipani论文阅读总结

2023-05-09 10:35:56 164 1

原创 c++中如何把任意类型的指针转化为void*

C++任意类型指针无损转换为void*

2022-10-27 10:38:17 2685

原创 模型训练中一种确定大概最优学习率范围的方法

  在我训练模型的过程中,我经常不知该如何确定学习率,因为学习率的大小直接会影响到模型训练的精度的结果,因此我们可以用tf.keras.callbacks中的一个叫lr_schedule的学习率控制器,他可以帮助我们确定最优学习率的大概的范围。例如,在一个有序序列的预测范例中,使用这种方法来确定大致最优的学习率所在的范围:下面展示一些 内联代码片。model = tf.keras.models.Sequential([ tf.keras.layers.Lambda(lambda x: tf.exp

2020-10-02 13:02:26 849

转载 标签平滑的原理

目录1.产生背景2.工作原理3.参考资料这里采用的是TensorFlow1.x的版本写的代码,具体的代码部分在TensorFlow2.x中实现的,请看:link.1.产生背景假设选用softmax交叉熵训练一个三分类模型,某样本经过网络最后一层的输出为向量x=(1.0, 5.0, 4.0),对x进行softmax转换输出为:假设该样本y=[0, 1, 0],那损失loss:按softmax交叉熵优化时,针对这个样本而言,会让0.721越来越接近于1,因为这样会减少loss,但是这有可能造成过拟

2020-10-01 22:19:56 470

转载 基于 Keras 和 Tensorflow 的标签平滑实现

首先谢谢原文作者写出这么好的文章,帮助像我这样的初学者能快速的了解并应用相关技术,谢谢!!!首先附上原文地址:基于 Keras 和 Tensorflow 的标签平滑实现.目录1.标签平滑出现的意义和背景2.标签平滑以及其作用3.显式的类别标签平滑案例4.标签平滑对损失函数操作案例5.训练过程曲线6.附 - 辅助函数6.1 **learning_rate_schedulers.py**6.2 minigooglenet.py7.相关文献这里主要介绍基于 Keras 和 TensorFlow 的标签平滑(

2020-09-30 21:40:35 1449

转载 有监督学习、无监督学习和半监督学习的分类

有监督学习、无监督学习和半监督学习的分类一、基本概念二、有监督学习(supervised learning)三、无监督学习(unsupervised learning)四、半监督学习(semi-supervised learning)SSL (半监督学习)的分类:1.半监督分类2.半监督回归3.半监督聚类4.半监督降维一、基本概念1 特征(feature)数据的特征。      举例:书的内容2 标签(label)数据的标签。&nbs

2020-09-30 18:42:19 6259

原创 更好的训练效果——-用组归一化替代批归一化

     对数据用组归一化处理在多数的情况下得到的训练结果优于批归一化得到的训练结果。     不能盲目的尝试,要多看看以前大佬们做过项目的思想,多方综合。附上原文链接:链接: https://www.jianshu.com/p/61dfd598e878?utm_source=oschina-app....

2020-09-28 21:56:15 214

原创 解决TensorFlow-gpu版本训练模型时内存不够的问题

解决TensorFlow-gpu版本训练模型时内存不够的问题在训练模型的过程中发现自己的内存不够,选择了降低图片精度的方式,但是这样会降低训练的准确率的结果;辗转多次方法,看了许多大佬的博客与方案后,发现了我们可以通过降低batch_size,增加每个epoch的steps的方法,从而达到了不用压缩图片的目的,因为我们的显卡一次装不下这么多的东西,那么减小batch_size,直到显卡可以一批次装下这么多东西即可。...

2020-09-21 21:36:47 3130

转载 正则化缓解过拟合原理

作者:邓子明链接:https://www.zhihu.com/question/20700829/answer/119314862来源:知乎    看完题主的这篇文章,才算是真的有了一定的理解,粗略的懂了那么一点点原理:    例如,你已经知道了哪几个参数是引起过拟合的元凶,那么就在后面加上这几个参数的惩罚项:比如a与b是罪魁祸首,那么就在损失函数后面加上1000a+1000b,1000是我假设的惩罚项的系数,我们在最小

2020-08-03 21:45:30 212

原创 机器学习3---梯度下降法的_初阶原理_与简单应用

梯度下降法梯度下降法概念梯度下降法的实现过程图像层面说明数学原理梯度下降法概念可以用来求任何一个函数的最小值所在的点。在机器学习中我们可以用梯度下降法来最小化任意代价函数J,从而得到最优的参数解。梯度下降法的实现过程实际上函数的参数值可以不只有两个,可以是好多个。1.给代价函数的参数设定初始值(什么都行)。2.持续改变参数的值,从而减小J函数的值,直到我们找到J函数的最小值或者局部最小值为止。图像层面说明下面举例说明:这个代价函数可以写成J(θ0,θ1)。我们给参数赋一个初值,就相

2020-05-28 21:05:40 427

原创 机器学习2--一次函数拟合的数学过程

代价函数参数引入(监督学习)代价函数单个参数优化拟合过程(θ0 = 0的情况下)两个参数情况下的优化过程(θ1与θ0都参与优化)参数引入(监督学习)Hypothesis是假设函数,假设该函数的两个参数:y = θ1x + θ0,θ1是权重,θ0是偏置;取不同的参数会得到不同的函数图像。由于是初学者,所以吴老师从最简单的一次函数模型开始介绍,后面我们入门后,难度应该会得到提高,逐渐到高次函数。目的是选择合适的参数使得h(x)的值接近我们的训练样本的标签值。即尽量使h(x)与样本标签值y的差异小。注意,

2020-05-27 17:51:49 2885

原创 机器学习1-监督学习和非监督学习

机器学习1-知识点散记监督学习无监督学习聚类算法应用鸡尾酒会算法监督学习简而言之,在一个有标签的数据集的前提下,用合适的算法进行模型的建立和优化。之后我们可以用这个模型对某些特征值进行预测。无监督学习直接上图,依然是肿瘤问题,这是监督学习的数据集,每个样本有标签,都被标记了是良性还是恶性1.这是无监督学习的数据集,可以看到它们的标签都一样,或者是没有标签,我们只是告诉模型这里有一堆数据。我们没有把正确答案告诉模型。2.我们知道他被分为了两个簇,这里运用了聚类算法,聚类算法在比如Google

2020-05-26 21:03:00 351

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除