标签平滑的原理


在TensorFlow2.x版本中调用该函数,请看: 基于 Keras 和 Tensorflow 的标签平滑实现.

1.产生背景

假设选用softmax交叉熵训练一个三分类模型,某样本经过网络最后一层的输出为向量x=(1.0, 5.0, 4.0),对x进行softmax转换输出为:
在这里插入图片描述

假设该样本y=[0, 1, 0],那损失loss:
在这里插入图片描述

按softmax交叉熵优化时,针对这个样本而言,会让0.721越来越接近于1,因为这样会减少loss,但是这有可能造成过拟合。可以这样理解,如果0.721已经接近于1了,那么网络会对该样本十分“关注”,也就是过拟合。我们可以通过标签平滑的方式解决。

以下是论文中对此问题的阐述:
在这里插入图片描述

2.工作原理

假设有一批数据在神经网络最后一层的输出值和他们的真实标签

out = np.array([[4.0, 5.0, 10.0], [1.0, 5.0, 4.0], [1.0, 15.0, 4.0]])

y = np.array([[0, 0, 1], [0, 1, 0], [0, 1, 0]])

直接计算softmax交叉熵损失:

res = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=out, label_smoothing=0)

print(tf.Session().run(res))

结果为:0.11191821843385696

使用标签平滑后:

res2 = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=out, label_smoothing=0.001)

print(tf.Session().run(res2))

结果为:0.11647378653287888

可以看出,损失比之前增加了,他的标签平滑的原理是对真实标签做了改变,源码里的公式为:

new_onehot_labels = onehot_labels * (1 - label_smoothing) + label_smoothing / num_classes

new_onehot_labels = y * (1 - 0.001) + 0.001 / 3

print(y)

print(new_onehot_labels)

[[0 0 1]

[0 1 0]

[0 1 0]]

[[3.33333333e-04 3.33333333e-04 9.99333333e-01]

[3.33333333e-04 9.99333333e-01 3.33333333e-04]

[3.33333333e-04 9.99333333e-01 3.33333333e-04]]

然后使用平滑标签计算softmax交叉熵就能得到最终的结果了,我们也可以验证一下:

res3 = tf.losses.softmax_cross_entropy(onehot_labels=new_onehot_labels, logits=out, label_smoothing=0)

print(tf.Session().run(res3))

结果为:0.11647378653287888
该过程的代码片:
下面展示一些 内联代码片

# 采用的是TensorFlow1.x版本的形式
import numpy as np
import tensorflow as tf

out = np.array([[4.0, 5.0, 10.0], [1.0, 5.0, 4.0], [1.0, 15.0, 4.0]])
y = np.array([[0, 0, 1], [0, 1, 0], [0, 1, 0]])

res = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=out, label_smoothing=0)
print(tf.Session().run(res))

res2 = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=out, label_smoothing=0.001)
print(tf.Session().run(res2))

# new_onehot_labels = onehot_labels * (1 - label_smoothing)
#                           + label_smoothing / num_classes

new_onehot_labels = y * (1 - 0.001) + 0.001 / 3
print(y)
print(new_onehot_labels)
res3 = tf.losses.softmax_cross_entropy(onehot_labels=new_onehot_labels, logits=out, label_smoothing=0)
print(tf.Session().run(res3))

3.参考资料

Rethinking the Inception Architecture for Computer Vision
标签平滑(Label Smoothing)——分类问题中错误标注的一种解决方法.

<think>嗯,用户想了解标签平滑损失的概念、作用、实现方法以及在深度学习中的应用。首先,我需要明确标签平滑的基本原理,它主要是为了解决什么问题。记得标签平滑是用于分类任务中,防止模型对真实标签过于自信,从而缓解过拟合。 接下来,作用方面,应该包括防止过拟合、提高模型泛化能力,还有可能提到对噪声标签的鲁棒性。然后,实现方法的话,核心是对标签进行平滑处理,将原始的one-hot编码转换成带有平滑参数的分布,比如将1变成1-ε,剩下的概率均匀分配到其他类别。 需要检查LaTeX的使用是否正确,比如公式要用$...$或$$...$$。例如,正确写出标签平滑后的分布公式:$y_i^{LS} = (1 - \epsilon) y_i + \epsilon / K$,其中K是类别数。确保独立公式用$$包围,行内公式用单个$。 然后,结合用户提供的引用,引用[1]提到标签平滑的应用场景是任何涉及交叉熵损失的场景,而引用[2]则关于loss曲线的平滑处理模块。可能需要将这些引用自然地融入到回答中,比如在说明应用场景时引用[1],在讨论loss曲线时引用[2]。 用户可能还想知道具体的实现步骤,比如在PyTorch或TensorFlow中如何应用标签平滑。这里需要给出代码示例,比如自定义损失函数或者在数据预处理时修改标签。要注意代码块的格式是否正确,使用反引号包裹,并指定语言类型如python。 此外,用户可能关心标签平滑的参数选择,比如ε的常见取值,这部分需要给出经验值,如0.1或0.2,并说明调整方法。同时,注意事项部分要提到参数调整的影响,以及可能带来的问题,比如过度平滑导致模型欠拟合。 相关问题部分,需要生成与标签平滑相关的问题,比如与其他正则化方法的比较、参数影响、在NLP或CV中的应用案例,以及实现中的常见错误。确保问题有针对性,能够帮助用户进一步探索。 最后,检查整个回答是否符合系统级指令,特别是LaTeX格式和引用标识的位置。确保没有使用用户不可见的内容,回答结构清晰,分点明确,帮助用户逐步理解标签平滑的各个方面。</think>### 标签平滑损失详解 #### 1. 概念定义 标签平滑损失(Label Smoothing Loss)是一种正则化技术,通过修改真实标签的分布,缓解模型对训练数据的**过度自信**(over-confidence)。传统分类任务中,真实标签通常采用$y_i=1$(目标类)和$y_j=0$(非目标类)的one-hot编码,而标签平滑将其改为: $$y_i^{LS} = (1 - \epsilon) y_i + \frac{\epsilon}{K}$$ 其中$\epsilon$为平滑系数(常取0.1),$K$为类别总数[^1]。 #### 2. 核心作用 | 作用方向 | 具体说明 | |-------------------|---------------------------------| | 防止过拟合 | 减少模型对训练样本的绝对信任 | | 提升泛化能力 | 在ImageNet等任务中提升Top-5精度 | | 增强噪声鲁棒性 | 缓解错误标签对训练的负面影响 | #### 3. 实现方法 **PyTorch实现示例:** ```python class LabelSmoothingLoss(nn.Module): def __init__(self, epsilon=0.1, classes=10): super().__init__() self.epsilon = epsilon self.classes = classes def forward(self, pred, target): # 将target转换为平滑分布 smoothed = torch.full_like(pred, self.epsilon/(self.classes-1)) smoothed.scatter_(1, target.unsqueeze(1), 1 - self.epsilon) # 计算交叉熵 return F.cross_entropy(pred, smoothed, reduction='mean') ``` #### 4. 参数选择建议 - $\epsilon$取值范围:$0.05 \leq \epsilon \leq 0.3$ - 图像分类:常用$\epsilon=0.1$ - 噪声较多数据:建议$\epsilon=0.2$ - 需通过验证集调整 #### 5. 注意事项 1. 过度平滑($\epsilon>0.3$)可能导致模型收敛困难 2. 与dropout、权重衰减等正则化方法组合使用时需调整强度 3. 在目标检测、语义分割等密集预测任务中同样有效
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值