p3 in 2019/12/5
论文名称:Commonsense Knowledge Aware Conversation Generation with Graph Attention
… … … :具有图注意力的常识知识感知会话生成系统
论文作者:HaoZhou, TomYoung, MinlieHuang, HaizhouZhao, JingfangXu, XiaoyanZhu
论文来源:ICJAI2018
下载链接:http://coai.cs.tsinghua.edu.cn/hml/media/files/2018_commonsense_ZhouHao_3_TYVQ7Iq.pdf
源码链接:https://github.com/tuxchow/ccm
参考笔记:https://blog.csdn.net/tMb8Z9Vdm66wH68VX1/article/details/81518247
Abstract
提出一种新的开放域对话的生成模型,在对话生成中使用大规模的常识知识库。
- 以前的方法:将知识三元组分开使用,所用到的知识是非结构化的文本或特定领域的知识三元组。
- 以前方法的不足:不能基于互相关联的实体和它们之间的关系来给出图的语义信息:(1)高度依赖非结构化文本的质量,受限于小规模的、领域特定的知识库;2)通常将知识三元组分开使用,而不是将其作为每个图的完整个体。)
- 本文的方法:常识知识感知对话模型(Commonsense Knowledge Aware Conversational Model, CCM),将每个知识图作为完整的个体,从而获得结构更清晰,语义也更连贯的编码信息。设计了两种新的图注意力机制。1)静态图注意力机制对检索到的图进行编码,来提升问题的语义,帮助系统充分理解问题。2)动态图注意机制会读取每个知识图及其中的三元组,然后利用图和三元组的语义信息来生成更合理的回复。
- 本文的贡献:1)该项目是首次在对话生成神经系统中,尝试使用大规模常识知识。有了这些知识的支撑,我们的模型能够更好地理解对话,从而给出更合适、信息量更大的回复。2)代替过去将知识三元组分开使用的方法,我们设计了静态和动态图注意力机制,把知识三元组看作一个图,基于与其相邻实体和它们之间的关系,我们可以更好地解读所研究实体的语义。
图 1ÿ