那些年我们一起踩过的cv2与np.array以及测试PSNR的坑

作者语:本人为low-level vision研究方向的渣渣研究生一枚,怎奈各位大佬的神经网络代码美(luan)轮(qi)美(ba)奂(zao),有人大佬输入的是BGR图像,有的大佬输入的RGB,经过一个晚上加一个噪声的debug,终于搞清楚了cv2与np.array的坑,顺便说一下如何测试psnr才能保证python与matlab一致。

 

读取图像+RGB转BGR

x = np.array(imread(os.path.join(set_dir, set_cur, im)), dtype=np.uint8)
img = cv2.cvtColor(x, cv2.COLOR_RGB2BGR)

这样使用np.array读取的图像,读出来的是RGB通道的,想转成brg的需要使用cv2转或者这样转

 

x = np.array(imread(os.path.join(set_dir, set_cur, im)), dtype=np.uint8)
img = x[:,:,::-1]

如果使用cv2来存储图像切记切记是BGR,如果你是rgb用cv2.write通道变了

 

但是如果你测试psnr就必须保证img和GT都是RGB的或者都是BGR的

但是惊奇的发现了一个问题就是

outimg = np.around(outimg)

 

一定在测试psnr之前这样使用

 

np.float32转np.uint8并不会四舍五入 比如像素值是127.8 转了之后就是127而不是128 这样算出来的psnr会低一些 如果使用四舍五入的方法 就是127.8 算为128会高一点
 

发布了24 篇原创文章 · 获赞 7 · 访问量 2万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览