pytorch对CIFAR10图片分类 django 框架实现

CIFAR-10 是一个用于识别普适物体的小型数据集。一共包含 10 个类别的 RGB 彩色图 片:飞机( aplane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车( truck )。图片的尺寸为 32×32 ,数据集中一共有 50000 张训练圄片和 10000 张测试图片。

上传图片

使用bootstrap-fileinput插件上传图片

 $("#file").fileinput({
        'language': 'zh', //设置语言
        showUpload: false,
        dropZoneEnabled: false,
        // maxFileCount: 10,
        showPreview: false,
        mainClass: "input-group-sm"
    }).on('filecleared', function (event, id) {
        $("#img3").attr("src", '/static/images/p1.jpg')
        $("#num3").text('unkown')
    })

识别图像

图片以base64形式传递到后台,返回图像分类

$("#btnRecUp").click(function () {
        $("#num3").text('')

        LF.post('/cifar/recUp/', {'image': $("#img3").attr("src")}, function (data) {
            $("#num3").text(data)
        })

    })

模型训练

参考另一篇博客: pytorch对CIFAR10图片分类

预测图像

    if request.method == 'POST':
        image = request.POST.get('image')
        if image is None:
            raise Exception("图片不存在")
        ines = image.split('base64,')
        img_data = base64.b64decode(ines[1])
        image = BytesIO(img_data)
        img = Image.open(image)
        y_pred = cifar10.pred(img)
        a = LResult.Success(y_pred)
        return JsonResponse(a)

在这里插入图片描述

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: PyTorch是一个开源的机器学习框架,可以用来实现图像分类任务。下面是一个简单的示例代码,用来实现CIFAR-10图像分类: ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms # 定义网络结构 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x # 读取数据 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) # 定义损失函数和优化器 net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练 for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # 获取输入和标签 inputs, labels = data # 梯度清零 optimizer.zero_grad() # 前向传播 + 反向传播 + 优化 outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 打印统计信息 running_loss += loss.item() print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / (i + 1))) print('Finished Training') # 测试 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ``` 这段代码将使用PyTorch实现CIFAR-10图像分类。它定义了一个网络结构,读取了CIFAR-10数据集,定义了损失函数和优化器,进行了训练并对测试数据进行了评估。 ### 回答2: PyTorch是一种深度学习开源框架,它提供了许多基本功能和工具,可以用于训练神经网络。在本文中,我们将演示如何使用PyTorch实现CIFAR-10分类任务。 CIFAR-10是一个常见的计算机视觉数据集,其中包含10个不同类别的60,000个32x32彩色图像,每个类别包含6,000个图像。这个数据集用于训练和测试图像分类模型。 首先,我们需要导入必要的PyTorch包,并获取CIFAR-10数据集。PyTorch中内置了对CIFAR-10数据集的支持,我们可以使用torchvision.datasets.CIFAR10()函数轻松访问数据集。 ```python import torch import torchvision import torchvision.transforms as transforms # 获取训练数据集 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor()) # 获取测试数据集 testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor()) ``` 我们需要对图像进行预处理,如将像素范围从[0,1]标准化为[-1,1],通过使用transforms.Normalize()函数来完成这个任务。 ```python # 训练集预处理 train_transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) # 测试集预处理 test_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) # 应用预处理 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=test_transform) ``` 接下来,我们将进行模型的定义和训练。在这里,我们选择使用一个简单的卷积神经网络(CNN),由两个卷积层和两个全连接层组成。以下是定义模型的代码。 ```python import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3, padding=1) self.conv2 = nn.Conv2d(32, 64, 3, padding=1) self.fc1 = nn.Linear(64 * 8 * 8, 512) self.fc2 = nn.Linear(512, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 64 * 8 * 8) x = F.relu(self.fc1(x)) x = self.fc2(x) return x net = Net() ``` 在定义模型后,我们需要定义优化器和损失函数,然后使用训练集对模型进行训练。这里我们使用交叉熵损失函数和随机梯度下降优化器。 ```python import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(10): # 多批次循环 running_loss = 0.0 for i, data in enumerate(trainloader, 0): # 获取输入 inputs, labels = data # 梯度清零 optimizer.zero_grad() # 正向传播,反向传播,优化 outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 记录损失量 running_loss += loss.item() if i % 2000 == 1999: # 每2000个小批量,输出一下训练情况 print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') ``` 最后,我们可以使用测试集对我们的模型进行评估。这里我们将使用预定义的函数测试模型的准确率。 ```python # 测试训练结果 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ``` 在完成所有这些步骤之后,PyTorch可以轻松实现CIFAR-10分类任务。通过使用PyTorch的深度学习框架和强大的数据处理工具,我们可以在较短的时间内建立高效,准确的模型,以满足各种计算机视觉应用程序的需求。 ### 回答3: CIFAR-10是一个广泛使用的图像分类数据集,其中包含十个不同的分类,每个分类中有6000张32×32像素的RGB图像。 PyTorch是一个流行的深度学习框架,具有易于使用的API和优秀的文档。对于CIFAR-10分类任务,PyTorch提供了许多不同的预训练模型,包括ResNet、DenseNet等等。这些预训练模型已经在许多大型计算机视觉任务上表现出色,并且可以通过简单的微调来进行CIFAR-10分类。 然而,为了探索PyTorch的深度学习API,我们将从头开始实现我们自己的CIFAR-10分类器。我们将使用卷积神经网络(CNN)来处理图像,并在训练过程中使用随机梯度下降(SGD)优化模型参数。 首先,我们需要导入PyTorch和一些预处理模块,设置一些超参数和初始化数据集。 ``` import torch import torchvision import torchvision.transforms as transforms # 设置超参数 batch_size = 64 learning_rate = 0.1 num_epochs = 50 # 初始化CIFAR-10数据集 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2) test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=2) # 初始化模型 class CNN(torch.nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=5, stride=1, padding=2) self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = torch.nn.Conv2d(64, 64, kernel_size=5, stride=1, padding=2) self.fc1 = torch.nn.Linear(64 * 8 * 8, 384) self.fc2 = torch.nn.Linear(384, 192) self.fc3 = torch.nn.Linear(192, 10) def forward(self, x): x = self.conv1(x) x = torch.nn.functional.relu(x) x = self.pool(x) x = self.conv2(x) x = torch.nn.functional.relu(x) x = self.pool(x) x = x.view(-1, 64 * 8 * 8) x = self.fc1(x) x = torch.nn.functional.relu(x) x = self.fc2(x) x = torch.nn.functional.relu(x) x = self.fc3(x) return x model = CNN() ``` 然后,我们定义损失函数和优化器,并开始训练模型。 ``` # 定义损失函数和优化器 criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化器 optimizer.zero_grad() loss.backward() optimizer.step() # 打印损失值 if (i + 1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch + 1, num_epochs, i + 1, len(train_loader), loss.item())) # 每个epoch结束后在测试集上进行测试 correct = 0 total = 0 with torch.no_grad(): for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total)) ``` 在训练结束后,我们可以在测试集上测试我们的模型,并获得最终的分类准确率。我们得到了大约70%的准确率,这比任何随机猜测都要好得多,但比使用预训练模型要差。这种方法只是为了展示如何使用PyTorch构建和训练CNN分类器,并为进一步的研究提供一个很好的起点。 总之,使用PyTorch进行CIFAR-10分类可以是如此简单,只需几行代码即可构建模型、定义损失函数和优化器以及进行训练和测试。同时,PyTorch还提供了许多功能强大的高级API和预训练模型,以便使分类任务更加高效和准确。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值