Function
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 1393 Accepted Submission(s): 647
Problem Description
You are given a permutation
a
from
0
to
n−1
and a permutation
b
from
0
to
m−1
.
Define that the domain of function f is the set of integers from 0 to n−1 , and the range of it is the set of integers from 0 to m−1 .
Please calculate the quantity of different functions f satisfying that f(i)=bf(ai) for each i from 0 to n−1 .
Two functions are different if and only if there exists at least one integer from 0 to n−1 mapped into different integers in these two functions.
The answer may be too large, so please output it in modulo 109+7 .
Define that the domain of function f is the set of integers from 0 to n−1 , and the range of it is the set of integers from 0 to m−1 .
Please calculate the quantity of different functions f satisfying that f(i)=bf(ai) for each i from 0 to n−1 .
Two functions are different if and only if there exists at least one integer from 0 to n−1 mapped into different integers in these two functions.
The answer may be too large, so please output it in modulo 109+7 .
Input
The input contains multiple test cases.
For each case:
The first line contains two numbers n, m . (1≤n≤100000,1≤m≤100000)
The second line contains n numbers, ranged from 0 to n−1 , the i -th number of which represents ai−1 .
The third line contains m numbers, ranged from 0 to m−1 , the i -th number of which represents bi−1 .
It is guaranteed that ∑n≤106, ∑m≤106 .
For each case:
The first line contains two numbers n, m . (1≤n≤100000,1≤m≤100000)
The second line contains n numbers, ranged from 0 to n−1 , the i -th number of which represents ai−1 .
The third line contains m numbers, ranged from 0 to m−1 , the i -th number of which represents bi−1 .
It is guaranteed that ∑n≤106, ∑m≤106 .
Output
For each test case, output "
Case #
x
:
y
" in one line (without quotes), where
x
indicates the case number starting from
1
and
y
denotes the answer of corresponding case.
Sample Input
3 2 1 0 2 0 1 3 4 2 0 1 0 2 3 1
Sample Output
Case #1: 4 Case #2: 4思路:这其实一道关于数学映射的题目,只要找到a[i]与i之间形成的环和b[i]与i之间的环,并把他们所形成的环的大小记录下来。代码:#include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <cmath> #include <stdlib.h> #include <vector> #include <queue> #include <stack> using namespace std; const int MOD=1e9+7; vector<int>a1; vector<int>a2; int v[100005]; int main() { int m,n; int b[100005],c[100005]; int k=1; while(scanf("%d %d",&m,&n)!=EOF) { int i,j; a1.clear(); a2.clear(); for(i=0;i<m;i++) { scanf("%d",&b[i]); } for(i=0;i<n;i++) { scanf("%d",&c[i]); } memset(v,0,sizeof(v)); int x,len; for(i=0;i<m;i++) { x=i,len=1; if(!v[i]) { v[i]=1; while(b[x]!=i) { x=b[x]; v[x]=1; len++; } a1.push_back(len); } } memset(v,0,sizeof(v)); for(i=0;i<n;i++) { x=i,len=1; if(!v[i]) { v[i]=1; while(c[x]!=i) { x=c[x]; v[x]=1; len++; } a2.push_back(len); } } int ans=1; for(i=0;i<a1.size();i++) { int ans1=0; for(j=0;j<a2.size();j++) { if(a1[i]%a2[j]==0) { ans1=(ans1+a2[j])%MOD; } } ans=(ans*ans1)%MOD; } printf("Case #%d: %d\n",k++,ans); } return 0; }