洛谷 P1273 有线电视网 (树上背包)

https://www.luogu.org/problemnew/show/P1273

 

思路:

dp[i][j]表示以i为根节点的子树让j个人听能获得最大的钱,接下来就是在树上进行01背包操作了。

代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=3e3+10;
const int inf=0x3f3f3f3f;
struct node
{
    int v,w;
};
vector<node>e[maxn];
int dp[maxn][maxn];
int n,m;
int c[maxn];
int sz[maxn];
int in[maxn];
void dfs(int x,int pre)
{
    if(in[x]==1)
    {
        dp[x][1]=c[x];
        sz[x]=1;
        return;
    }
    dp[x][0]=0;
    for(int i=0;i<e[x].size();i++)
    {
        int v=e[x][i].v;
        int w=e[x][i].w;
        if(v==pre)continue;
        dfs(v,x);
        sz[x]+=sz[v];
        for(int j=sz[x];j>=1;j--)
        {
            for(int k=1;k<=min(j,sz[v]);k++)
            {
                dp[x][j]=max(dp[x][j],dp[x][j-k]+dp[v][k]-w);
            }
        }
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    int k,y,w;
    node q;
    memset(dp,-inf,sizeof(dp));
    for(int i=1;i<=n-m;i++)
    {
        scanf("%d",&k);
        for(int j=1;j<=k;j++)
        {
            scanf("%d%d",&y,&w);
            q.v=y,q.w=w;
            e[i].push_back(q);
            in[i]++;
            in[y]++;
            q.v=i,q.w=w;
            e[y].push_back(q);
        }
    }
    for(int i=n-m+1;i<=n;i++)
    {
        scanf("%d",&c[i]);
    }
    dfs(1,-1);
    for(int i=m;i>=0;i--)
    {
        if(dp[1][i]>=0)
        {
            printf("%d\n",i);
            break;
        }
    }
    return 0;
}

 

洛谷P2240部分背包问题是一个经典的动态规划问题。问题描述是这样的:给定n种物品和一个容量为V的背包。每种物品都有自己的重量w[i]和价值v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。 这里的“部分背包”意味着我们可以选择物品的一部分放入背包中。这里给出一个C++的基本解法示例: ```cpp #include <iostream> #include <algorithm> using namespace std; int dp[1010][1010]; // dp[i][j] 表示前i件物品在不超过j重量的情况下可以获得的最大价值 int main() { int n, V; cin >> n >> V; for(int i = 0; i <= n; ++i) { for(int j = 0; j <= V; ++j) { dp[i][j] = 0; // 初始化dp数组为0 } } for(int i = 1; i <= n; ++i) { int w, v; cin >> w >> v; for(int j = 1; j <= V; ++j) { if(j >= w) { // 如果当前物品重量不超过背包容量,考虑取与不取两种情况,取最大值 dp[i][j] = max(dp[i-1][j], dp[i-1][j-w] + v); } else { // 如果当前物品重量超过背包容量,则不能取这个物品 dp[i][j] = dp[i-1][j]; } } } cout << dp[n][V] << endl; // 输出最大价值 return 0; } ``` 这段代码首先初始化一个二维数组dp,其中dp[i][j]表示考虑前i件物品,当背包容量为j时能够得到的最大价值。之后,通过双层循环,从后往前遍历所有物品,并计算在不超过背包容量的情况下,每种物品的取与不取的最大价值,最终得到的最大价值存储在dp[n][V]中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值