前缀和(一维,子矩阵的和)

这篇博客介绍了如何利用前缀和解决一维和二维数组中子序列和子矩阵的求和问题。对于一维序列,通过构建前缀和数组,可以快速计算出任意区间内的元素和;对于二维矩阵,同样应用前缀和思想,能高效地计算子矩阵的总和。示例代码展示了具体的实现方法。
摘要由CSDN通过智能技术生成

1、一维前缀和

题目

输入一个长度为 n 的整数序列。

接下来再输入 m 个询问,每个询问输入一对 l,r。

对于每个询问,输出原序列中从第 l 个数到第 r 个数的和。

输入格式

第一行包含两个整数 n 和 m。

第二行包含 n 个整数,表示整数数列。

接下来 m 行,每行包含两个整数 l 和 r,表示一个询问的区间范围。

输出格式

共 m 行,每行输出一个询问的结果。

数据范围

1≤n,m≤100000,

1≤l≤r≤n,
−1000≤数列中元素的值≤1000

输入样例:

5 3
2 1 3 6 4
1 2
1 3
2 4

输出样例:

3
6
10

可以先求出数列的前缀和数组,分别为s[0],s[1]....s[n],每一项分别为原数列的前n项的和,然后这个第l到r项的和就可以利用这个前缀和数组的相减就能够得到

解决代码如下:

#include <bits/stdc++.h>

using namespace std;

const int N = 1e5;
int n,m;
int a[N],s[N];

int main ()
{
    scanf("%d%d",&n,&m);
    for(int i = 1; i <= n; i ++)
    {
        scanf("%d",&a[i]);
    }
    for(int i = 1; i <= n; i++
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值