深度学习中的梯度下降优化算法笔记

本文详细介绍了深度学习中的梯度下降优化算法,包括批量梯度下降、随机梯度下降、小批量梯度下降及其优缺点。进一步探讨了Momentum、Adagrad、AdaDelta、Rprop、RMSprop和Adam等改进方法,阐述了它们如何调整学习率和处理梯度问题,以提高模型训练的效率和性能。
摘要由CSDN通过智能技术生成

梯度下降方法是目前最流行的神经网络优化方法,并且现在主流的深度学习框架(tensorflow,caffe,keras,MXNET等)都包含了若干种梯度下降迭代优化器。我们在搭建网络的时候,基本都是拿它们封装好的函数直接用。实际上这些算法在不同情况可能有很大的性能差异,弄清楚它们的原理差异,有助于我们分析。

参考文章:梯度下降优化方法总结

 

梯度下降(gradient descent,GD)是最基础的概念,它有三个很近似的名词:

批量梯度下降(Batch gradient descent)

每次使用整个训练集计算目标函数的梯度,

因为每更新一次参数就需要计算整个数据集,所以批量梯度下降算法十分缓慢而且难以存放在内存中计算,且无法在线更新。

随机梯度下降(stochastic gradient descent, SGD)

一次只使用一个样本计算目标函数的梯度,

因为每次只计算一个样本,所以SGD计算非常快且适合线上更新模型。SGD频繁地参数更新可以使算法跳出局部最优点,更可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值