【题解】[CQOI2018]破解D-H协议-题解

题目来源:CQOI2018
传送门

题目描述

Diffie-Hellman 密钥交换协议是一种简单有效的密钥交换方法。它可以让通讯双方在没有事先约定密钥(密码)的情况下,通过不安全的信道(可能被窃听)建立一个安全的密钥,用于加密之后的通讯内容。

假定通讯双方名为 Alice 和 Bob,协议的工作过程描述如下(其中 m o d    P \mod P modP 表示取模运算):协议规定一个固定的质数 P P P,以及模 P P P的一个原根 g g g P P P g g g 的数值都是公开的,无需保密。
Alice 生成一个随机数 a a a,并计算 A = g a m o d    P A=g^a\mod P A=gamodP,将 A A A通过不安全信道发送给 Bob。
Bob 生成一个随机数 b b b,并计算 B = g b m o d    P B=g^b\mod P B=gbmodP,将 B B B通过不安全信道发送给 Alice。
Bob 根据收到的 A A A 计算出 K = A b m o d    P K=A^b\mod P K=AbmodP,而 Alice 根据收到的 B B B 计算出 B a m o d    P B^a \mod P BamodP
双方得到了相同的 K K K,即 g a b m o d    P g^{ab}\mod P gabmodP K K K可以用于之后通讯的加密密钥。

可见,这个过程中可能被窃听的只有 A A A, B B B,而 a a a, b b b 是保密的。并且根据 A A A, b b b, P P P, g g g 4 4 4 个数,不能轻易计算出 K K K,因此可以作为一个安全的密钥。

当然安全是相对的,该协议的安全性取决于数值的大小,通常都选取数百位以上的大整数以避免被破解。然而如果 Alice 和 Bob 编程时偷懒,为了避免实现大数运算,选择的数值都小于 2 31 2^{31} 231,那么破解他们的密钥就比较容易了。

输入格式

第一行包含两个空格分开的正整数 g g g P P P

第二行为一个正整数 n n n,表示 Alice 和 Bob 共进行了 n n n 次连接(即运行了 n n n 次协议)。

接下来 n n n 行,每行包含两个空格分开的正整数 A A A B B B,表示某次连接中,被窃听的 A A A, B B B 数值。

输出格式

输出包含 n n n 行,每行一个正整数 K K K,为每次连接你破解得到的密钥。

样例输入

3 31
3
27 16
21 3
9 26

样例输出

4
21
25

分析

又臭又长的题面
BSGS模板题
根据题目,可得:
A = g a m o d    p B = g b m o d    p A=g^a\mod p\\ B=g^b\mod p A=gamodpB=gbmodp
K = g a b m o d    p = A b m o d    p = B a m o d    p \begin{aligned} K=g^{ab}\mod p\\ =A^b\mod p\\ =B^a\mod p\\ \end{aligned} K=gabmodp=Abmodp=Bamodp
可构造如下方程:
g b = B m o d    p g^b=B\mod p gb=Bmodp
可以根据BSGS求出 b b b,然后快速幂求出 K = A b m o d    p K=A^b\mod p K=Abmodp
当然,用 A A A构造与用 B B B的效果是一样的。你可以构造 g a = A m o d    p g^a=A\mod p ga=Amodp。这没有问题。

code

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
LL g,p,a,b;
int n;
map<LL,int> mp;
LL ksm(LL x,LL y) {
    LL sum=1,tt=x;
    while(y) {
        if(y&1) sum=(sum*tt)%p;
        tt=(tt*tt)%p,y>>=1;
    }
    return sum;
}
LL BSGS() {
    if(b==1) return 0;
    mp.clear();
    LL m=ceil(sqrt(1.0*p)),tmp=1,res=1;
    for(int i=1;i<=m;i++) {
        tmp=(tmp*g)%p;
        mp[(tmp*b)%p]=i;
    }
    for(int i=1;i<=m;i++) {
        res=(res*tmp)%p;
        if(mp[res]) return i*m-mp[res];
    }
    return -1;
}
int main() {
    scanf("%lld%lld%d",&g,&p,&n);
    for(int i=1;i<=n;i++) {
        scanf("%lld%lld",&a,&b);
        printf("%lld\n",ksm(a,BSGS()));
    }
    return 0;
}

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值