题目来源:CQOI2018
传送门
题目描述
Diffie-Hellman 密钥交换协议是一种简单有效的密钥交换方法。它可以让通讯双方在没有事先约定密钥(密码)的情况下,通过不安全的信道(可能被窃听)建立一个安全的密钥,用于加密之后的通讯内容。
假定通讯双方名为 Alice 和 Bob,协议的工作过程描述如下(其中
m
o
d
P
\mod P
modP 表示取模运算):协议规定一个固定的质数
P
P
P,以及模
P
P
P的一个原根
g
g
g。
P
P
P 和
g
g
g 的数值都是公开的,无需保密。
Alice 生成一个随机数
a
a
a,并计算
A
=
g
a
m
o
d
P
A=g^a\mod P
A=gamodP,将
A
A
A通过不安全信道发送给 Bob。
Bob 生成一个随机数
b
b
b,并计算
B
=
g
b
m
o
d
P
B=g^b\mod P
B=gbmodP,将
B
B
B通过不安全信道发送给 Alice。
Bob 根据收到的
A
A
A 计算出
K
=
A
b
m
o
d
P
K=A^b\mod P
K=AbmodP,而 Alice 根据收到的
B
B
B 计算出
B
a
m
o
d
P
B^a \mod P
BamodP。
双方得到了相同的
K
K
K,即
g
a
b
m
o
d
P
g^{ab}\mod P
gabmodP。
K
K
K可以用于之后通讯的加密密钥。
可见,这个过程中可能被窃听的只有 A A A, B B B,而 a a a, b b b 是保密的。并且根据 A A A, b b b, P P P, g g g 这 4 4 4 个数,不能轻易计算出 K K K,因此可以作为一个安全的密钥。
当然安全是相对的,该协议的安全性取决于数值的大小,通常都选取数百位以上的大整数以避免被破解。然而如果 Alice 和 Bob 编程时偷懒,为了避免实现大数运算,选择的数值都小于 2 31 2^{31} 231,那么破解他们的密钥就比较容易了。
输入格式
第一行包含两个空格分开的正整数 g g g 和 P P P。
第二行为一个正整数 n n n,表示 Alice 和 Bob 共进行了 n n n 次连接(即运行了 n n n 次协议)。
接下来 n n n 行,每行包含两个空格分开的正整数 A A A 和 B B B,表示某次连接中,被窃听的 A A A, B B B 数值。
输出格式
输出包含 n n n 行,每行一个正整数 K K K,为每次连接你破解得到的密钥。
样例输入
3 31
3
27 16
21 3
9 26
样例输出
4
21
25
分析
又臭又长的题面
BSGS模板题
根据题目,可得:
A
=
g
a
m
o
d
p
B
=
g
b
m
o
d
p
A=g^a\mod p\\ B=g^b\mod p
A=gamodpB=gbmodp
K
=
g
a
b
m
o
d
p
=
A
b
m
o
d
p
=
B
a
m
o
d
p
\begin{aligned} K=g^{ab}\mod p\\ =A^b\mod p\\ =B^a\mod p\\ \end{aligned}
K=gabmodp=Abmodp=Bamodp
可构造如下方程:
g
b
=
B
m
o
d
p
g^b=B\mod p
gb=Bmodp
可以根据BSGS求出
b
b
b,然后快速幂求出
K
=
A
b
m
o
d
p
K=A^b\mod p
K=Abmodp
当然,用
A
A
A构造与用
B
B
B的效果是一样的。你可以构造
g
a
=
A
m
o
d
p
g^a=A\mod p
ga=Amodp。这没有问题。
code
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
LL g,p,a,b;
int n;
map<LL,int> mp;
LL ksm(LL x,LL y) {
LL sum=1,tt=x;
while(y) {
if(y&1) sum=(sum*tt)%p;
tt=(tt*tt)%p,y>>=1;
}
return sum;
}
LL BSGS() {
if(b==1) return 0;
mp.clear();
LL m=ceil(sqrt(1.0*p)),tmp=1,res=1;
for(int i=1;i<=m;i++) {
tmp=(tmp*g)%p;
mp[(tmp*b)%p]=i;
}
for(int i=1;i<=m;i++) {
res=(res*tmp)%p;
if(mp[res]) return i*m-mp[res];
}
return -1;
}
int main() {
scanf("%lld%lld%d",&g,&p,&n);
for(int i=1;i<=n;i++) {
scanf("%lld%lld",&a,&b);
printf("%lld\n",ksm(a,BSGS()));
}
return 0;
}