A - Marin and Photoshoot
题意
给定01串,使得任意区间内,0的个数不超过1的个数
题解
每两个0之间至少要有2个1
Code
int n;
string s;
void solve(){
cin >> n;
cin >> s;
int cnt = 0;
for (int i = 1; i < n; i++){
if (s[i] == '0' && s[i - 1] == '0')
cnt += 2;
if (i >= 2 && s[i] == '0' && s[i - 1] == '1' && s[i - 2] == '0')
cnt += 1;
}
cout << cnt << endl;
}
B - Marin and Anti-coprime Permutation
题意
给定一组1n的排列,问能否使得该排列每一个数选取1n中的一个数乘自己(1~n每个只能用一次)使得最后的gcd>1
问有多少种方案
题解
这题比a要简单呜呜
我们如果想,乘法的本质就是加法,奇偶的加法只有全偶数和奇数相加就是奇数,那么我们将奇数赋予一个偶数的乘数,偶数对奇数相加那必然是偶数,剩下的奇数给偶数,这样全是奇数,就gcd也就是2了
那么有多少种方法呢?
当n为奇数的时候没有足够的偶数可以一一对应给奇数,那么方案数是0
当n为偶数的时候,有 n 2 \frac{n}{2} 2n个偶数, n 2 \frac{n}{2} 2n奇数,给奇数分配偶数有 A n 2 n 2 A_{\frac{n}{2}}^{\frac{n}{2}} A2n2n,给偶数分配奇数有 A n 2 n 2 A_{\frac{n}{2}}^{\frac{n}{2}} A2n2n,那么答案就是$ (A_{\frac{n}{2}}^{\frac{n}{2}} ) ^2$
Code
void solve(){
cin >> n;
if(n & 1)
cout << 0 << endl;
else{
ll ans = 1;
// ll tmp = 1;
for (int i = 1; i <= n / 2; i++){
ans = ans * i % mod;
}
cout << ans * ans % mod << endl;
}
}
C - Shinju and the Lost Permutation
题意
我们定义一个数组b,对于一个排列p, b i = m a x ( p 1 , p 2 , … , p i ) b_i=max(p_1,p_2,\dots,p_i) bi=max(p1,p2,…,pi),该数组的权值为数组b中元素的种类数。
现给定一数组c, c i c_i ci为排列p第 i − 1 i-1 i−1次循环的权值
问根据这个数组c,我们能否确定其存在一个排列p与之对应
题解
按照上述的定义,首先我们能知道,c的长度为n,那么就会将排列所有的旋转出来的结果出现,所以说,n一定会出现在数组的首位置一次,且有且只有一次,所以c数组中如果出现了多个1,或者没出现1,那么一定是不合法的
其次,我们判断c数组的合法性的时候,c数组中的元素的顺序是无所谓的,但是相对顺序是不能变得,因为只是排列的初始状态不同,并且排列旋转后所有的状态都会出现,并不会影响其c中的元素,关键的是相对顺序
而又由于权值的计算方式和将元素前移的方式我们知道,当从1开始时,下一个出现的元素一定会比n小,所以权值增加1,同理后面操作也可能会增加1,但是也可能会出现下一个要过来的数比当前n之前的所有的数都要大,例如1 2 3 5 4
,这样就会导致权值急剧下降,这是合法的
但是如果出现了下一位比当前位的差值超过了1,那么这是显然不可能的,因为每次都只会在前面多一个数,不可能会出现一次操作比n到的多了两个数
所以综上:
- 1只能在c数组中必须且只能出现一次
- 从c数组1所在的位置往后的数前后差值小于等于1
满足上述条件的就是YES
Code
// 官方题解代码,感觉学到了不少新的stl
void solve() {
int n; cin >> n;
vector<int> a(n);
for (int &v: a) cin >> v;
if (count(a.begin(), a.end(), 1) != 1) {
cout << "NO\n";
return;
}
int p = find(a.begin(), a.end(), 1) - a.begin();
rotate(a.begin(), a.begin() + p, a.end());
cout << a[0] << ' ';
for (int i = 1; i < n; ++i) {
cout << a[i] << ' ';
if (a[i] - a[i - 1] > 1) {
cout << "NO\n";
return;
}
}
cout << "YES\n";
}
D1 - 388535 (Easy Version)
题意
给定一个数组 a a a、一个 l l l和一个 r r r,数组a中包含了长度为 r − l + 1 r-l+1 r−l+1的 l ∼ r l\sim r l∼r的排列
将数组元素变为 a i = a i x o r x a_i=a_i \; xor \; x ai=aixorx
给定最后的数组a,问x是多少
ez版本中 l l l为0
题解
题目要求我们只需要对数组进行异或一次,那么本质上上,对于每一个数的同一位来说,如果^1,就说明对这位取反了,
那么我们只需要看看对于当前给定数组的每一位上统计是否有1的数量与原排列中0的数量相对应,有的话就说明x的这个位为1
Code
int T;
ll l, r;
int a[N];
int b[N];
int cnta[20][2];
int cntb[20][2];
void solve(){
memset(cnta, 0, sizeof(cnta));
memset(cntb, 0, sizeof(cntb));
cin >> l >> r;
for (int i = l; i <= r; i++){
cin >> a[i];
}
for (int i = l; i <= r; i++){
for (int j = 0; j < 20; j++){
cnta[j][(a[i] >> j) & 1]++;
}
}
for (int i = l; i <= r; i++){
for (int j = 0; j < 20; j++){
cntb[j][(i >> j) & 1]++;
}
}
int ans = 0;
for (int i = 0; i < 20; i++){
if(cnta[i][0] == cntb[i][1])
ans += 1ll << i;
}
cout << ans << endl;
// for (int i = l; i <= r; i++){
// cout << (ans ^ a[i]) << ' ';
// }
// cout << endl
// << Endl;
}
D2 - 388535 (Hard Version)
题意
与d1一致,唯一的区别在于l不是一定等于0的
题解
ygg tql!https://zhuanlan.zhihu.com/p/488753758
leonard的板子tql
考察点:异或的性质与01trie求
要点:
- 异或的性质
- x^b=a; a^b=x
- $a\neq b \iff a \oplus x \neq b \oplus x $
- a ⊕ a = 0 , a ⊕ 0 = a a \oplus a=0, a\oplus 0=a a⊕a=0,a⊕0=a
- 01trie求最大、最小异或对、
Code
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <map>
#include <vector>
#include <set>
#include <queue>
#include <stack>
#include <sstream>
#include <unordered_map>
#define ll long long
#define ull unsigned long long
#define re return
#define pb push_back
#define Endl "\n"
#define endl "\n"
#define x first
#define y second
#define all(x) (x).begin(),(x).end()
using namespace std;
using PII = pair<int, int>;
const int N = 1e6 + 10;
const int M = 1e5 + 10;
const int mod = 1000000007;
const int INF = 0x3f3f3f3f;
int dx[4] = {-1,0,1,0};
int dy[4] = {0,1,0,-1};
int T;
int l, r;
int a[N];
int tr[20 * (1 << 18)][2], idx;
// 每个数最多有31位,一个有N个数,一共需要31 * N个节点
void insert(int x) {
int p = 0;
for (int i = 20; i >= 0; i--) {
int &s = tr[p][x >> i & 1];
if (!s) s = ++idx;
p = s;
}
}
int query_mx(int x) {
int p = 0, res = 0;
for (int i = 20; i >= 0; i--) {
int s = x >> i & 1;
if (tr[p][!s]) {
res += 1 << i;
p = tr[p][!s];
} else p = tr[p][s];
}
return res;
}
int query_mn(int x) {
int p = 0, res = 0;
for (int i = 20; i >= 0; i--) {
int s = x >> i & 1;
if (tr[p][s]) {
p = tr[p][s];
} else p = tr[p][!s], res += 1 << i;
}
return res;
}
void del(int x) {
int p = 0;
for (int i = 20; i >= 0; i--) {
int s = tr[p][x >> i & 1];
tr[p][x >> i & 1] = 0;
p = s;
}
}
void solve(){
// init();
cin >> l >> r;
for (int i = l; i <= r; i++){
cin >> a[i];
insert(a[i]);
}
for (int i = l; i <= r; i++){
int x = (a[i] ^ l);
int maxx = (query_mx(x));
int minn = (query_mn(x));
//cout << x << " " << maxx << " " << minn << "\n";
if(maxx == r && minn == l){
cout << x << '\n';
break;
}
}
for (int i = l; i <= r; i++)
del(a[i]);
//idx = 0;
}
int main(){
// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
T = 1;
cin >> T;
while(T--){
solve();
}
}