《数据压缩》实验报告四·DPCM编解码

一.实验原理

DPCM是差分预测编码调制的缩写,是比较典型的预测编码系统。在DPCM系统中,需要注意的是预测器的输入是已经解码以后的样本。之所以不用原始样本来做预测,是因为在解码端无法得到原始样本,只能得到存在误差的样本。因此,在DPCM编码器中实际内嵌了一个解码器,如编码器中虚线框中所示。在一个DPCM系统中,有两个因素需要设计:预测器和量化器。理想情况下,预测器和量化器应进行联合优化。实际中,采用一种次优的设计方法:分别进行线性预测器和量化器的优化设计。

二.实验流程


三.实验关键代码

在BMP2YUV实验代码的基础上添加以下代码

CJ = (unsigned char *)malloc(frameWidth * frameHeight);
	  WC = (unsigned char *)malloc(frameWidth * frameHeight);
      int m,n;
	  unsigned char *py,*pcj,*pwc,*pu,*pv;
	  py=yuv.Y;pcj=CJ;pwc=WC;  pu=yuv.U;pv=yuv.V;
	  for(m=0;m<frameHeight;m++)
	  {
		  for(n=0;n<frameWidth;n++)
		  {  
			  if(n==0)
			  {			    
				 *pcj=128;  //第一列的预测值为128
				 if((*py-*pcj)/2+128>256) *pwc=256;//把范围固定在0~256,进行量化
				 else if((*py-*pcj)/2+128<0) *pwc=0;
				 else *pwc=(*py-*pcj)/2+128;
                 py+=1;pcj+=1;pwc+=1;		 
			  }


              else
			  {

				   if((*py-*(pcj-1))/2+128>256) *pwc=256;//把范围固定在0~256,进行量化,计算误差
				   else if((*py-*pcj)/2+128<0) *pwc=0;
			       else *pwc=(*py-*(pcj-1))/2 + 128;
                
			    	*pcj=  ((*pwc-128)*2)+*(pcj-1);//重建
			  
			       py+=1;pcj+=1;pwc+=1;

			  }
			  
		  } 
	  }

把两个块数据写入文件

    fwrite(CJ, 1, frameWidth * frameHeight, chongjianFile);
    fwrite(WC, 1, frameWidth * frameHeight, wuchaFile);

四.实验结果

原始图现象,重建图像,预测误差图像



将三个文件用Huffman进行熵编码,得到以下数据





五.实验结论

经过DPCM编码后,信源符号概率分布变得集中,压缩比也提高了


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值