[HNOI2001] 求正整数

题面

求正整数

题解

r q y   d a l a o rqy\ dalao rqy dalao 学姐的题解 + 我自己的理解。

根据算数基本定理。
一个数可以被唯一分解为:
p 1 k 1 ∗ p 2 k 2 ∗ … p n k n p_{1} ^{k_1} * p_{2} ^{k_2} * …p_{n} ^{k_n} p1k1p2k2pnkn
根据组合的知识,它的因子个数显然等于:
( k 1 + 1 ) ∗ ( k 2 + 1 ) ∗ … ∗ ( k n + 1 ) (k_1 + 1) * (k_2 + 1) * … *(k_n + 1) (k1+1)(k2+1)(kn+1)
(它的因子可以从分解它的质数中,任意选取一些质数来拼。)

而这道题如果用贪心的思想来做显然不行,贪心不行只好尝试 d p dp dp
f [ i ] [ j ] f[i][j] f[i][j] 表示用了前 j j j 个质数,且因数个数为 i i i 的最小正整数是多少。
所以得到状态转移方程:
f [ i ] [ j ] = m i n k ∣ i ( f [ i / k ] [ j − 1 ] ∗ p j k − 1 ) f[i][j] = min_{k | i}(f[i / k][j - 1] * p_{j} ^ {k - 1}) f[i][j]=minki(f[i/k][j1]pjk1)
表示由状态 f [ i / k ] [ j − 1 ] f[i / k][j - 1] f[i/k][j1] 即因子个数为 i / k i / k i/k 个,用了前 j − 1 j - 1 j1 个质数的最小正整数,乘上第 j j j 个质数的 k − 1 k - 1 k1 次方,根据上面那个因子个数的的公式,在乘了过后因子个数显然会变成 i / k ∗ ( k − 1 + 1 ) = i i / k * (k - 1 +1) = i i/k(k1+1)=i 个。
稍微想想,当因子个数很多时,数据肯定要用高精,但是高精的状态转移显然复杂度很高。所以考虑取 l o g log log
所以有: l o g ( f [ i / k ] [ j − 1 ] ∗ p j k − 1 ) = f [ i / k ] [ j − 1 ] + ( k − 1 ) ∗ l o g p j log(f[i / k][j - 1] * p_{j} ^ {k - 1}) = f[i / k][j - 1] + (k - 1) * logp_j log(f[i/k][j1]pjk1)=f[i/k][j1]+(k1)logpj
因为所有的 f [ i ] [ j ] f[i][j] f[i][j] 都是取了 l o g log log 的,所以那个 f [ i / k ] [ j − 1 ] f[i / k][j - 1] f[i/k][j1] 出来之后自然就不要 l o g log log 了。
因为 f [ i ] [ j ] f[i][j] f[i][j] 只能从因子个数整除 i i i 的状态转移,所以我们可以记录一下哪些状态是整除 m m m 的,只从它们转移,因为我们最后只需要 m m m 的状态嘛。
跑完 d p dp dp 之后自然就是找路径,因为我们要输出的是原本的值,加一个高精乘单精就好了。
转移过程在代码中。

代码

抄的 r q y rqy rqy 学姐的 t a o . . . tao... tao...
m m m 在代码中定义成了变量 n n n

#include<cstdio>
#include<cmath>
#include<iostream>

const int M = 1e5 + 5;
const int p[20] = {//注意是从 0 开始,和状态的那个不同
	2,  3,  5,  7, 11,
    13, 17, 19, 23, 29,
    31, 37, 41, 43, 47,
    53, 59, 61, 67, 71
};

int n,m,d[505];
double f[505][20],logp[20];

struct Mul {
	int num[M],len;
	inline void mul(int x) {
		int v = 0;
		for(int i = 0; i < len; i++) {
			v = (num[i] = num[i] * x + v) / 10;
			num[i] %= 10;
		}
		while(v) num[len++] = v % 10,v /= 10;
	}
}A;

int main() {
	scanf("%d",&n);
	for(int i = 1; i <= n; i++) if(n % i == 0) d[m++] = i;//注意这个是 m++
	for(int i = 0; i < 20; i++) f[0][i] = 0.0;
	for(int i = 0; i < 20; i++) logp[i] = log(p[i]);
	for(int i = 1; i <= m; i++) {
		for(int k = 0; k < 20; k++) f[i][k] = 1e9;
		for(int j = 0; j < i; j++) {
			if(d[i] % d[j]) continue;//d数组相当于是到因子个数为d[]的映射
			int t = d[i] / d[j];
			for(int k = 1; k < 20; k++)
				f[i][k] = std::min(f[i][k],f[j][k - 1] + (t - 1) * logp[k - 1]);
		}
	}
	A.num[0] = A.len = 1;
	int j = 0;
	// 这一步是找出因子个数为 n 的最小正整数
	for(int i = 0; i < 20; i++) if (f[m - 1][i] < f[m - 1][j]) j = i;//m - 1 是因为上面是 m++
	for(int i = m - 1, nxt; i; i = nxt,j--) {
    for(nxt = 0; d[i] % d[nxt] || f[i][j] < f[nxt][j - 1]
        + logp[j - 1] * (d[i] / d[nxt] - 1) - 1e-5; nxt++);
     // 暴力找出当前状态是由哪个状态转移过来的,注意要加1e-5,因为在转移过程中会掉精度
    for (int k = 1; k < d[i] / d[nxt]; k++)
      A.mul(p[j - 1]);// 给答案乘上 pj 的 k - 1 次方
    }
	while (A.len--) printf("%d", A.num[A.len]);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值