概率图模型&概率模型 及其应用

概率图模型

有向 vs 无向

概率图模型用图刻画一组随机变量之间的相关关系. 有向(无环)图刻画的概率图模型称作 bayesian network, 无向图刻画的概率图模型称作 markov network.

有向图模型和无向图模型直观的区别在于“因果性”, 本质的区别在于两种模型建模了不同的独立关系.例如,从 independence map 的角度: 有向图模型无法表示无向环形关系, 无向图模型无法表示有向 V 形结构.

无向图模型

Pr ⁡ ( s ) = 1 Z ∏ C ϕ C ( s C ) \Pr(s) = \frac{1}{Z} \prod_{C} \phi_C(s_C) Pr(s)=Z1CϕC(sC)

有向图模型

Pr ⁡ ( s ) = ∏ i Pr ⁡ ( s i ∣ p a r e n t ( s i ) ) \Pr(s) = \prod_i \Pr(s_i \vert \mathrm{parent}(s_i)) Pr(s)=iPr(siparent(si))

概率模型

参数估计

参数分布

Pr ⁡ ( θ ∣ S ) ∝ Pr ⁡ ( θ ) Pr ⁡ ( S ∣ θ ) \Pr(\theta \vert S) \propto \Pr(\theta) \Pr(S \vert \theta) Pr(θS)Pr(θ)Pr(Sθ)

极大后验

arg ⁡ max ⁡ θ Pr ⁡ ( θ ∣ S ) = arg ⁡ max ⁡ θ Pr ⁡ ( θ ) Pr ⁡ ( S ∣ θ ) \arg \max_{\theta} \Pr(\theta \vert S) = \arg \max_{\theta} \Pr(\theta) \Pr(S \vert \theta) argθmaxPr(θS)=argθmaxPr(θ)Pr(Sθ)

极大似然 (极大后验的基础上假定参数的先验均匀)

arg ⁡ max ⁡ θ Pr ⁡ ( θ ∣ S ) = arg ⁡ max ⁡ θ Pr ⁡ ( S ∣ θ ) \arg \max_{\theta} \Pr(\theta \vert S) = \arg \max_{\theta} \Pr(S \vert \theta) argθmaxPr(θS)=argθmaxPr(Sθ)

隐变量估计

极大似然

arg ⁡ max ⁡ θ Pr ⁡ ( θ ∣ S ) = arg ⁡ max ⁡ θ Pr ⁡ ( S ∣ θ ) = arg ⁡ max ⁡ θ ∑ Z Pr ⁡ ( S , Z ∣ θ ) \arg \max_{\theta} \Pr(\theta \vert S) = \arg \max_{\theta} \Pr(S \vert \theta) = \arg \max_{\theta} \sum_{Z} \Pr(S,Z \vert \theta) argθmaxPr(θS)=argθmaxPr(Sθ)=argθmaxZPr(S,Zθ)

似然下界

weighted algebra geometry inequality 角度:

∑ Z Pr ⁡ ( S , Z ∣ θ ) = ∑ Z Pr ⁡ ( Z ∣ η ) Pr ⁡ ( S , Z ∣ θ ) Pr ⁡ ( Z ∣ η ) ⩾ ∏ Z ( Pr ⁡ ( S , Z ∣ θ ) Pr ⁡ ( Z ∣ η ) ) Pr ⁡ ( Z ∣ η ) \sum_{Z} \Pr(S,Z \vert \theta) = \sum_{Z} \Pr(Z \vert \eta) \frac{\Pr(S,Z \vert \theta)}{\Pr(Z \vert \eta)} \geqslant \prod_{Z} \left( \frac{\Pr(S,Z \vert \theta)}{\Pr(Z \vert \eta)} \right)^{\Pr(Z \vert \eta)} ZPr(S,Zθ)=ZPr(Zη)Pr(Zη)Pr(S,Zθ)Z(Pr(Zη)Pr(S,Zθ))Pr(Zη)

jensen’s inequality 角度:

log ⁡ ∑ Z Pr ⁡ ( S , Z ∣ θ ) = log ⁡ ∑ Z Pr ⁡ ( Z ∣ η ) Pr ⁡ ( S , Z ∣ θ ) Pr ⁡ ( Z ∣ η ) ⩾ ∑ Z Pr ⁡ ( Z ∣ η ) log ⁡ Pr ⁡ ( S , Z ∣ θ ) Pr ⁡ ( Z ∣ η ) \log \sum_{Z} \Pr(S,Z \vert \theta) = \log \sum_{Z} \Pr(Z \vert \eta) \frac{\Pr(S,Z \vert \theta)}{\Pr(Z \vert \eta)} \geqslant \sum_{Z} \Pr(Z \vert \eta) \log \frac{\Pr(S,Z \vert \theta)}{\Pr(Z \vert \eta)} logZPr(S,Zθ)=logZPr(Zη)Pr(Zη)Pr(S,Zθ)ZPr(Zη)logPr(Zη)Pr(S,Zθ)

∑ Z Pr ⁡ ( Z ∣ η ) log ⁡ Pr ⁡ ( S , Z ∣ θ ) Pr ⁡ ( Z ∣ η ) = ∑ Z Pr ⁡ ( Z ∣ η ) log ⁡ Pr ⁡ ( S , Z ∣ θ ) − ∑ Z Pr ⁡ ( Z ∣ η ) log ⁡ Pr ⁡ ( Z ∣ η ) = ∑ Z Pr ⁡ ( Z ∣ η ) log ⁡ Pr ⁡ ( S , Z ∣ θ ) + E n t r o p y ( Pr ⁡ ( Z ∣ η ) ) \begin{aligned} \sum_{Z} \Pr(Z \vert \eta) \log \frac{\Pr(S,Z \vert \theta)}{\Pr(Z \vert \eta)} &= \sum_{Z} \Pr(Z \vert \eta) \log \Pr(S,Z \vert \theta) - \sum_{Z} \Pr(Z \vert \eta) \log \Pr(Z \vert \eta) \\ &= \sum_{Z} \Pr(Z \vert \eta) \log \Pr(S,Z \vert \theta) + \mathrm{Entropy}(\Pr(Z \vert \eta)) \\ \end{aligned} ZPr(Zη)logPr(Zη)Pr(S,Zθ)=ZPr(Zη)logPr(S,Zθ)ZPr(Zη)logPr(

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值