计算方法复习提纲-上

本文主要探讨了数值计算中的误差来源和基本概念,包括模型误差、观测误差、绝对误差和相对误差,并介绍了减少误差的原则。此外,详细阐述了插值法,如Lagrange插值、Newton插值和Hermite插值,以及函数逼近与计算的原理,如最一致逼近、最小二乘法。文章还涵盖了数值稳定性和插值的几种方法,如逐次线性插值、分段低次插值和三次样条插值。
摘要由CSDN通过智能技术生成

第1章 绪论

误差来源

  • 模型误差&观测误差
  • 截断误差&舍入误差
    • 截断误差类似模型误差, 是近似解和真实值的误差.
      • 泰勒公式
    • 舍入误差类似观测误差, 是计算机表示和数学表示的误差.

误差的基本概念

  • (绝对)误差 e ∗ = x ∗ − x e^* = x^* - x e=xx
  • (绝对)误差限 ϵ ∗ ⩾ ∣ x ∗ − x ∣ \epsilon^* \geqslant |x^* - x| ϵxx
  • 相对误差 e r ∗ = e ∗ x ≈ e ∗ x ∗ e_r^* = \frac{e^*}{x} \approx \frac{e^*}{x^*} er=xexe
  • 相对误差 ϵ r ∗ = ϵ ∗ ∣ x ∣ ≈ ϵ ∗ ∣ x ∗ ∣ \epsilon_r^* = \frac{\epsilon^*}{|x|} \approx \frac{\epsilon^*}{|x^*|} ϵr=xϵxϵ
  • 估计误差近似真实误差的条件 ∣ e ∗ x ∗ − e ∗ x ∣ ≪ ∣ e ∗ x ∗ ∣    ⟺    ∣ e ∗ x ∗ ∣ ≪ 1 |\frac{e^*}{x^*} - \frac{e^*}{x}| \ll |\frac{e^*}{x^*}| \iff |\frac{e^*}{x^*}| \ll 1 xexexexe1
    • e ∗ x ∗ − e ∗ x = e ∗ ( x − x ∗ ) x ∗ x = − e ∗ 2 x ∗ ( x ∗ − e ∗ ) = − ( e ∗ x ∗ ) 2 1 − e ∗ x ∗ \frac{e^*}{x^*} - \frac{e^*}{x} = \frac{e^*(x - x^*)}{x^* x} = \frac{- {e^*}^2}{x^*(x^*-e^*)} = \frac{- (\frac{e^*}{x^*})^2}{1 - \frac{e^*}{x^*}} xexe=xxe(xx)=x(xe)e2=1xe(xe)2
  • 有效数字的舍入误差
    • 有效数字依附于衡量的量的量纲. 有效数字衡量绝对误差时具有绝对误差的量纲, 有效数字衡量相对误差时不具有量纲.
    • x ∗ = 1 0 m × ( a 1 . a 2 ⋯ a n ) = 1 0 m × ( a 1 × 1 0 − 0 + a 2 × 1 0 − 1 + ⋯ + a n × 1 0 − ( n − 1 ) + [ 1 2 × 1 0 − ( n − 1 ) ] ) x^* = 10^m \times (a_1.a_2 \cdots a_n) = 10^m \times (a_1 \times 10^{-0} + a_2 \times 10^{-1} + \cdots + a_n \times 10^{-(n-1)} + [\frac{1}{2} \times 10^{-(n-1)}]) x=10m×(a1.a2an)=10m×(a1×100+a2×101++an×10(n1)+[21×10(n1)])
    • n   d i g i t s    ⟺    e ∗ ⩽ 1 0 m × 1 2 × 1 0 − ( n − 1 ) n ~ \mathrm{digits} \iff e^* \leqslant 10^m \times \frac{1}{2} \times 10^{-(n-1)} n digitse10m×21×10(n1)
    • n   d i g i t s    ⟹    ϵ r ∗ = sup ⁡ e ∗ x ∗ ⩽ 1 0 m × 1 2 × 1 0 − ( n − 1 ) 1 0 m × a 1 × 1 0 − 0 n ~ \mathrm{digits} \implies \epsilon_r^* = \sup \frac{e^*}{x^*} \leqslant \frac{10^m \times \frac{1}{2} \times 10^{-(n-1)}}{10^m \times a_1 \times 10^{-0}} n digitsϵr=supxe10m×a1×10010m×21×10(n1)
    • ϵ r ∗ ⩽ 1 2 × 1 0 − ( n − 1 ) ( a 1 + 1 ) × 1 0 − 0    ⟹    e ∗ = x ∗ e r ∗ ⩽ x ∗ ϵ r ∗ ⩽ 1 0 m × ( a 1 + 1 ) × 1 0 − 0 1 2 × 1 0 − ( n − 1 ) ( a 1 + 1 ) × 1 0 − 0    ⟹    n   d i g i t s \epsilon_r^* \leqslant \frac{\frac{1}{2} \times 10^{-(n-1)}}{(a_1+1) \times 10^{-0}} \implies e^* = x^* e_r^* \leqslant x^* \epsilon_r^* \leqslant 10^m \times (a_1 + 1) \times 10^{-0} \frac{\frac{1}{2} \times 10^{-(n-1)}}{(a_1+1) \times 10^{-0}} \implies n ~ \mathrm{digits} ϵr(a1+1)×10021×10(n1)e=xerxϵr10m×(a1+1)×100(a1+1)×10021×10(n1)n digits
  • 数值运算的误差限
    • ϵ ( x ∗ ± y ∗ ) = ϵ ( x ∗ ) + ϵ ( y ∗ ) \epsilon(x^* \pm y^*) = \epsilon(x^*) + \epsilon(y^*) ϵ(x±y)=ϵ(x)+ϵ(y)
    • ϵ ( x ∗ y ∗ ) ≈ ∣ y ∗ ∣ ϵ ( x ∗ ) + ∣ x ∗ ∣ ϵ ( y ∗ ) \epsilon(x^* y^*) \approx |y^*| \epsilon(x^*) + |x^*| \epsilon(y^*) ϵ(xy)yϵ(x)+xϵ(y)
    • ϵ ( x ∗ y ∗ ) ≈ ∣ y ∗ ∣ ϵ ( x ∗ ) + ∣ x ∗ ∣ ϵ ( y ∗ ) ∣ y ∗ ∣ 2 \epsilon(\frac{x^*}{y^*}) \approx \frac{|y^*| \epsilon(x^*) + |x^*| \epsilon(y^*)}{|y^*|^2} ϵ(yx)y2yϵ(x)+xϵ(y)
    • f ( x ∗ ) ≈ ∣ f ′ ( x ∗ ) ∣ ϵ ( x ∗ ) f(x^*) \approx |f'(x^*)| \epsilon(x^*) f(x)f(x)ϵ(x)
    • f ( x ∗ ) ≈ ∑ i = 1 ∣ ∂ f ∂ x i ∗ ∣ ϵ ( x i ∗ ) f(x^*) \approx \sum\limits_{i=1}^{} |\frac{\partial f}{\partial x^*_i}| \epsilon(x^*_i) f(x)i=1xifϵ(xi)

减少误差的原则

  • 数值稳定性
    • 初始误差 ϵ 0 \epsilon_0 ϵ0 引入的误差累积 ϵ t \epsilon_t ϵt 不增长, 称作数值稳定.
  • 数值稳定性原则
    • 要避免两相近数相减
      • ϵ ( z ∗ ) = ϵ ( x ∗ − y ∗ ) = ϵ ( x ∗ ) + ϵ ( y ∗ ) = ∣ x ∗ ∣ ϵ ( x ∗ ) + ∣ y ∗ ∣ ϵ ( y ∗ ) ∣ z ∗ ∣ \epsilon(z^*) = \epsilon(x^* - y^*) = \epsilon(x^*) + \epsilon(y^*) = \frac{|x^*| \epsilon(x^*) + |y^*| \epsilon(y^*)}{|z^*|} ϵ(z)=ϵ(xy)=ϵ(x)+ϵ(y)=zxϵ(x)+yϵ(y)
    • 要避免除数绝对值远远小于被除数绝对值的除法
      • ϵ ( x ∗ y ∗ ) ≈ ∣ y ∗ ∣ ϵ ( x ∗ ) + ∣ x ∗ ∣ ϵ ( y ∗ ) ∣ y ∗ ∣ 2 = ϵ ( x ∗ ) ∣ y ∗ ∣ + ϵ ( y ∗ ) ∣ y ∗ ∣ ∣ x ∗ ∣ ∣ y ∗ ∣ \epsilon(\frac{x^*}{y^*}) \approx \frac{|y^*| \epsilon(x^*) + |x^*| \epsilon(y^*)}{|y^*|^2} = \frac{\epsilon(x^*)}{|y^*|} + \frac{\epsilon(y^*)}{|y^*|} \frac{|x^*|}{|y^*|} ϵ(yx)y2yϵ(x)+xϵ(y)=yϵ(x)+yϵ(y)yx
    • 要防止大数“吃掉”小数
      • 计算机的有效数位
    • 简化计算步骤&减少运算次数
  • 经典技术
    • 从小到大分组求和
    • 等价公式化简
    • 快速幂算法
    • 秦九韶算法

第2章 插值法

Lagrange插值

V 0 , ⋯   , n ( x 0 , ⋯   , x n ) = [ 1 x 0 ⋯ x 0 n ⋮ 1 x n ⋯ x n n ] V_{0, \cdots, n}(x_{0}, \cdots, x_{n}) = \begin{bmatrix} 1 & x_{0} & \cdots & x_{0}^n \\ & & \vdots & \\ 1 & x_{n} & \cdots & x_{n}^n \\ \end{bmatrix} V0,,n(x0,,xn)=11

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值