计算方法复习提纲-中

第4章 数值积分与数值微分

数值积分

  • 机械求积
    • 积分中值定理 ∫ a b f ( x ) d x = ( b − a ) f ( ξ ) \int\limits_{a}^{b} f(x) \mathrm{d}x = (b - a)f(\xi) abf(x)dx=(ba)f(ξ)
    • 梯形公式 T = ( b − a ) f ( a ) + f ( b ) 2 T = (b-a) \frac{f(a) + f(b)}{2} T=(ba)2f(a)+f(b)
    • (中)矩形公式 R = ( b − a ) f ( a + b 2 ) R = (b-a) f(\frac{a+b}{2}) R=(ba)f(2a+b)
    • 机械求积公式 ∫ a b f ( x ) d x = ∑ i = 1 n A i f ( x i ) \int\limits_{a}^{b} f(x) \mathrm{d}x = \sum\limits_{i=1}^{n} A_i f(x_i) abf(x)dx=i=1nAif(xi)
      • 将积分求值问题归结为函数值的计算, 避免寻找原函数.
  • m m m次代数精度
    • 求积公式对于次数不大于 m m m的多项式均能准确地成立, 但对于次 m + 1 m+1 m+1多项式就不一定准确.
    • 梯形公式 T T T 具有 1 1 1 次代数精度
    • 矩形公式 R R R 具有 1 1 1 次代数精度
    • 机械求积公式 ∑ i = 1 n A i f ( x i ) \sum\limits_{i=1}^{n} A_i f(x_i) i=1nAif(xi)
      • ∑ i = 0 n A i = b − a \sum\limits_{i=0}^{n} A_i = b - a i=0nAi=ba
      • ∑ i = 0 n A i x i = 1 2 ( b 2 − a 2 ) \sum\limits_{i=0}^{n} A_i x_i = \frac{1}{2}(b^2 - a^2) i=0nAixi=21(b2a2)
      • ⋯ \cdots
      • ∑ i = 0 n A i x i m = 1 m + 1 ( b m − a m ) \sum\limits_{i=0}^{n} A_i x_i^m = \frac{1}{m+1}(b^m - a^m) i=0nAixim=m+11(bmam)
      • m + 1 m+1 m+1 个约束, 2 n + 2 2n+2 2n+2 个变量.
  • 插值求积
    • I = ∫ a b f ( x ) d x ≈ ∫ a b L n ( x ) d x = I n I = \int\limits_{a}^{b} f(x) \mathrm{d}x \approx \int\limits_{a}^{b} L_n(x) \mathrm{d}x = I_n I=abf(x)dxabLn(x)dx=In
    • I n = ∑ i = 1 n ( ∫ a b l i ( x ) d x ) f ( x i ) = ∑ i = 1 n ( ∫ a b ∏ j ≠ i x − x j x i − x j d x ) f ( x i ) I_n = \sum\limits_{i=1}^{n} (\int\limits_{a}^{b} l_i(x) \mathrm{d}x) f(x_i) = \sum\limits_{i=1}^{n} (\int\limits_{a}^{b} \prod\limits_{j \neq i} \frac{x-x_j}{x_i-x_j} \mathrm{d}x) f(x_i) In=i=1n(abli(x)dx)f(xi)=i=1n(abj=ixixjxxjdx)f(xi) (插值求积∈机械求积)
    • R ( f ) = I − I n = ∫ a b ( f ( x ) − L n ( x ) ) d x = ∫ a b f ( n + 1 ) ( ξ ) ( n + 1 ) ! ω ( x ) d x R(f) = I - I_n = \int\limits_{a}^{b} (f(x) - L_n(x)) \mathrm{d}x = \int\limits_{a}^{b} \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega(x) \mathrm{d}x R(f)=IIn=ab(f(x)Ln(x))dx=ab(n+1)!f(n+1)(ξ)ω(x)dx
    • 加权积分中值定理 ∫ a b f ( x ) ρ ( x ) d x = f ( ξ ) ∫ a b ρ ( x ) d x \int\limits_{a}^{b} f(x) \rho(x) \mathrm{d}x = f(\xi) \int\limits_{a}^{b} \rho(x) \mathrm{d}x abf(x)ρ(x)dx=f(ξ)abρ(x)dx ( ρ ( x ) ⩾ 0 \rho(x) \geqslant 0 ρ(x)0)
  • 机械求积公式具有至少 n n n次代数精度    ⟺    \iff 插值求积
    • 插值求积显然具有至少 n n n次代数精度
    • 具有至少 n n n次代数精度必然插值求积
      • 固定 x 0 , ⋯   , x n x_0, \cdots, x_n x0,,xn
      • ∫ a b l i ( x ) d x = ∑ i = 1 m A i l i ( x i ) = A i \int\limits_{a}^{b} l_i(x) \mathrm{d}x = \sum\limits_{i=1}^{m} A_i l_i(x_i) = A_i abli(x)dx=i=1mAili(xi)=Ai
      • A i A_i Ai 恰好构成插值求积的求积系数

Newton-Cotes公式

  • 求积节点 (等分)
    • [ a , b ] [a,b] [a,b] 等分成 n n n 份, 步长 h = b − a n h = \frac{b-a}{n} h=nba.
  • 求积系数 (Cotes系数)
    • A i = ∫ a b l i ( x ) d x = ∫ a b ∏ j ≠ i x − x j x i − x j d x = h b − a ∫ 0 n ∏ j ≠ i t − j i − j d t = ( − 1 ) n − i n 1 i ! ( n − i ) ! ∫ 0 n ∏ j ≠ i ( t − j ) d t = C i n A_i = \int\limits_{a}^{b} l_i(x) \mathrm{d}x = \int\limits_{a}^{b} \prod\limits_{j \neq i} \frac{x-x_j}{x_i-x_j} \mathrm{d}x = \frac{h}{b-a} \int\limits_{0}^{n} \prod\limits_{j \neq i} \frac{t-j}{i-j} \mathrm{d}t = \frac{(-1)^{n-i}}{n} \frac{1}{i! (n-i)!} \int\limits_{0}^{n} \prod\limits_{j \neq i} (t-j) \mathrm{d}t = C^n_i Ai=abli(x)dx=abj=ixixjxxjdx=bah0nj=iijtjdt=n(1)nii!(ni)!10nj=i(tj)dt=Cin
    • n = 1 n=1 n=1, C 0 1 = C 1 1 = 1 2 C^1_0 = C^1_1 = \frac{1}{2} C01=C11=21.
      • T = ( b − a ) f ( a ) + f ( b ) 2 T = (b-a) \frac{f(a) + f(b)}{2} T=(ba)2f(a)+f(b) (梯形公式)
    • n = 2 n=2 n=2, C 0 2 = 1 6 C^2_0 = \frac{1}{6} C02=61, C 1 2 = 4 6 C^2_1 = \frac{4}{6} C12=64, C 2 2 = 1 6 C^2_2 = \frac{1}{6} C22=61.
      • (Simpson公式)
    • n = 3 n=3 n=3, 7 90 \frac{7}{90} 907, 32 90 \frac{32}{90} 9032, 12 90 \frac{12}{90} 9012, 32 90 \frac{32}{90} 9032, 7 90 \frac{7}{90} 907.
      • (Cotes公式)
    • n ⩾ 8 n \geqslant 8 n8, Cotes系数有正有负, 不保证数值稳定性.
  • 当阶 n n n 为偶数时,Newton-Cotes公式至少有 n + 1 n+1 n+1 次代数精度.
    • R ( f ) ∝ ∫ a b ω ( x ) d x = ∫ a b ∏ i = 0 n ( x − x i ) d x = h n + 2 ∫ 0 n ∏ i = 0 n ( t − i ) d t R(f) \propto \int\limits_{a}^{b} \omega(x) \mathrm{d}x = \int\limits_{a}^{b} \prod\limits_{i=0}^{n} (x - x_i) \mathrm{d}x = h^{n+2} \int\limits_{0}^{n} \prod\limits_{i=0}^{n} (t - i) \mathrm{d}t R(f)abω(x)dx=ab
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值