高等代数复习:多项式矩阵

本篇文章适合个人复习翻阅,不建议新手入门使用

多项式矩阵

基本定义和性质

定义:多项式矩阵( λ \lambda λ 阵)
形如以下的矩阵
( a 11 ( λ ) a 12 λ ⋯ a 1 n ( λ ) a 21 ( λ ) a 22 λ ⋯ a 2 n ( λ ) ⋮ ⋮ ⋮ a m 1 ( λ ) a m 2 λ ⋯ a m n ( λ ) ) \begin{pmatrix} a_{11}(\lambda)&a_{12}\lambda&\cdots&a_{1n}(\lambda)\\ a_{21}(\lambda)&a_{22}\lambda&\cdots&a_{2n}(\lambda)\\ \vdots&\vdots&&\vdots\\ a_{m1}(\lambda)&a_{m2}\lambda&\cdots&a_{mn}(\lambda)\\ \end{pmatrix} a11(λ)a21(λ)am1(λ)a12λa22λam2λa1n(λ)a2n(λ)amn(λ)

称为多项式矩阵,或称 λ \lambda λ 矩阵,记为 A ( λ ) A(\lambda) A(λ),其中 a i j ( λ ) a_{ij}(\lambda) aij(λ) 是以 λ \lambda λ 为未定元的数域 K \mathbb{K} K 上的多项式

定义:多项式矩阵的初等变换
初等行(列)变换

  1. A ( λ ) A(\lambda) A(λ) 的两行(列)对换
  2. A ( λ ) A(\lambda) A(λ) 的第 i i i 行(列)乘以非零常数 c ∈ K c\in\mathbb{K} cK
  3. A ( λ ) A(\lambda) A(λ) 的第 i i i 行(列)乘以 K \mathbb{K} K 上的多项式 f ( λ ) f(\lambda) f(λ) 后加到第 j j j 行(列)

定义:相抵
A ( λ ) , B ( λ ) A(\lambda),B(\lambda) A(λ),B(λ) 是同阶 λ \lambda λ 阵且 A ( λ ) A(\lambda) A(λ) λ \lambda λ 阵的初等变换后可变为 B ( λ ) B(\lambda) B(λ),则称 A ( λ ) A(\lambda) A(λ) B ( λ ) B(\lambda) B(λ) 相抵

定义:初等 λ \lambda λ

  1. n n n 阶单位阵的第 i i i 行与第 j j j 行对换,记为 P i j P_{ij} Pij
  2. n n n 阶单位阵的第 i i i 行乘以非零常数 c ∈ K c\in\mathbb{K} cK,记为 P i ( c ) P_i(c) Pi(c)
  3. n n n 阶单位阵的第 i i i 行乘以多项式 f ( λ ) f(\lambda) f(λ) 后加到第 j j j 行上去得到的矩阵,记为 T i j ( f ( λ ) ) T_{ij}(f(\lambda)) Tij(f(λ))

命题
λ \lambda λ A ( λ ) A(\lambda) A(λ) 施加第1,2,3类初等行(列)变换等效于用第1,2,3类初等 λ \lambda λ 阵左(右)乘 A ( λ ) A(\lambda) A(λ)

定义:可逆 λ \lambda λ
A ( λ ) , B ( λ ) A(\lambda),B(\lambda) A(λ),B(λ) 都是 n n n λ \lambda λ 阵,且
A ( λ ) B ( λ ) = B ( λ ) A ( λ ) = I n A(\lambda)B(\lambda)=B(\lambda)A(\lambda)=I_n A(λ)B(λ)=B(λ)A(λ)=In

则称 B ( λ ) B(\lambda) B(λ) A ( λ ) A(\lambda) A(λ) 的逆 λ \lambda λ

性质

  1. 有限个可逆 λ \lambda λ 阵之积仍为可逆 λ \lambda λ
  2. 初等 λ \lambda λ 阵必为可逆 λ \lambda λ

相抵标准型

命题: λ \lambda λ 阵的带余除法
M ( λ ) , N ( λ ) M(\lambda),N(\lambda) M(λ),N(λ) 是两个 n n n λ \lambda λ 阵且不为零,又设 B B B n n n 阶数字矩阵,则必存在 λ \lambda λ Q ( λ ) , S ( λ ) Q(\lambda),S(\lambda) Q(λ),S(λ) 和数字矩阵 R , T R,T R,T,使得
M ( λ ) = ( λ I − B ) Q ( λ ) + R M(\lambda)=(\lambda I-B)Q(\lambda)+R M(λ)=(λIB)Q(λ)+R

N ( λ ) = S ( λ ) ( λ I − B ) + T N(\lambda)=S(\lambda)(\lambda I-B)+T N(λ)=S(λ)(λIB)+T

定理
设数域 K \mathbb{K} K 上的矩阵 A , B A,B A,B,则 A , B A,B A,B 相似当且仅当 λ \lambda λ λ I − A \lambda I-A λIA λ I − B \lambda I-B λIB 相抵

证明
必要性易证,考虑充分性,设存在 M ( λ ) , N ( λ ) M(\lambda),N(\lambda) M(λ),N(λ),使得
M ( λ ) ( λ I − A ) N ( λ ) = λ I − B M(\lambda)(\lambda I-A)N(\lambda)=\lambda I-B M(λ)(λIA)N(λ)=λIB

由带余除法
M ( λ ) = ( λ I − B ) Q ( λ ) + R M(\lambda)=(\lambda I-B)Q(\lambda)+R M(λ)=(λIB)Q(λ)+R

整理得
R ( λ I − A ) = ( λ I − B ) [ N ( λ ) − 1 − Q ( λ ) ( λ I − A ) ] R(\lambda I-A)=(\lambda I-B)[N(\lambda)^{-1}-Q(\lambda)(\lambda I-A)] R(λIA)=(λIB)[N(λ)1Q(λ)(λIA)]

比较两端关于 λ \lambda λ 的多项式次数,可得 P ≜ N ( λ ) − 1 − Q ( λ ) ( λ I − A ) P\triangleq N(\lambda)^{-1}-Q(\lambda)(\lambda I-A) PN(λ)1Q(λ)(λIA) 是常数矩阵

再次整理得
( R − P ) λ = R A − B P (R-P)\lambda=RA-BP (RP)λ=RABP

比较次数得 R = P , R A = B P R=P,RA=BP R=P,RA=BP,只需证 P P P 是一个非异阵,由于
P N ( λ ) + Q ( λ ) ( λ I − A ) N ( λ ) = I PN(\lambda)+Q(\lambda)(\lambda I-A)N(\lambda)=I PN(λ)+Q(λ)(λIA)N(λ)=I

( λ I − A ) N ( λ ) = M ( λ ) − 1 ( λ I − B ) (\lambda I-A)N(\lambda)=M(\lambda)^{-1}(\lambda I-B) (λIA)N(λ)=M(λ)1(λIB)

因此
P N ( λ ) + Q ( λ ) M ( λ ) − 1 ( λ I − B ) = I PN(\lambda)+Q(\lambda)M(\lambda)^{-1}(\lambda I-B)=I PN(λ)+Q(λ)M(λ)1(λIB)=I

由带余除法 N ( λ ) = S ( λ ) ( λ I − B ) + T N(\lambda)=S(\lambda)(\lambda I-B)+T N(λ)=S(λ)(λIB)+T


[ P S ( λ ) + Q ( λ ) M ( λ ) − 1 ] ( λ I − B ) = I − P T [PS(\lambda)+Q(\lambda)M(\lambda)^{-1}](\lambda I-B)=I-PT [PS(λ)+Q(λ)M(λ)1](λIB)=IPT

上式右侧是次数小于等于零得矩阵多项式,故左边括号内的矩阵多项式必须为零,从而 P T = I PT=I PT=I,即 P P P 是非异阵

引理
A ( λ ) = ( a i j ( λ ) ) m × n A(\lambda)=(a_{ij}(\lambda))_{m\times n} A(λ)=(aij(λ))m×n 是任意非零 λ \lambda λ 阵,则 A ( λ ) A(\lambda) A(λ) 必相抵于如下的 λ \lambda λ B ( λ ) = ( b i j ( λ ) ) m × n B(\lambda)=(b_{ij}(\lambda))_{m\times n} B(λ)=(bij(λ))m×n,其中 b 11 ( λ ) ≠ 0 b_{11}(\lambda)\neq 0 b11(λ)=0,且 b 11 ( λ ) b_{11}(\lambda) b11(λ) 可整除 B ( λ ) B(\lambda) B(λ) 中的任意元素

定理: λ \lambda λ 阵的相抵标准型
n n n λ \lambda λ A ( λ ) A(\lambda) A(λ),则 A ( λ ) A(\lambda) A(λ) 相抵于对角阵
d i a g { d 1 ( λ ) , d 2 ( λ ) , … , d r ( λ ) , 0 , … , 0 } diag \{d_1(\lambda),d_2(\lambda),\dots,d_r(\lambda),0,\dots,0\} diag{d1(λ),d2(λ),,dr(λ),0,,0}

其中 d i ( λ ) d_i(\lambda) di(λ) 是非零首一多项式且 d i ( λ ) ∣ d i + 1 ( λ ) , i = 1 , 2 , … , r − 1 d_i(\lambda)\mid d_{i+1}(\lambda),i=1,2,\dots,r-1 di(λ)di+1(λ),i=1,2,,r1

注:

  1. 对长方形 λ \lambda λ 阵,结论和证明也类似
  2. 称上述定理中的 r r r A ( λ ) A(\lambda) A(λ) 的秩

推论
任意 n n n 阶可逆 λ \lambda λ 阵均可表示为有限个初等 λ \lambda λ 阵之积

参考书:《高等代数学》谢启鸿 姚慕生 吴泉水 编著

  • 25
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【课程简介】 (1)本课程特别适用于MATLAB爱好者,尤其适用于热衷于用MATLAB求解高等数学问题、图像处理问题、工程计算等问题。 (2)通过本课程,你将学习到如何使用MATLAB,如何用MATLAB求解高等数学中的计算问题,可以从计算机程序视角了解到数学公式的计算原理。另外,本课程还结合了众多实例案例,让你深入了解MATLAB的数据处理之美。 【完整课程列表】 中山大学 数学实验与数学软件 第01章 MATLAB软件入门(共46页).pptx 中山大学 数学实验与数学软件 第02章 MATLAB编辑器与符号计算(一)(共43页).pptx 中山大学 数学实验与数学软件 第03章 MATLAB符号计算(二) (共41页).pptx 中山大学 数学实验与数学软件 第04章 MATLAB符号计算(三)(共47页).pptx 中山大学 数学实验与数学软件 第05章 MATLAB数值数组与数组化编程(共42页).pptx 中山大学 数学实验与数学软件 第06章 MATLAB矩阵函数与程序设计初步(共38页).pptx 中山大学 数学实验与数学软件 第07章 MATLAB数值微积分(共32页).pptx 中山大学 数学实验与数学软件 第08章 MATLAB微分方程数值解法(共33页).pptx 中山大学 数学实验与数学软件 第09章 MATLAB数值线性代数(共29页).pptx 中山大学 数学实验与数学软件 第10章 MATLAB进阶程序设计与问题求解(共40页).pptx 中山大学 数学实验与数学软件 第11章 MATLAB概率统计与曲线拟合(共45页).pptx 中山大学 数学实验与数学软件 第12章 MATLAB数字信号与声音处理(共36页).pptx 中山大学 数学实验与数学软件 第13章 MATLAB多项式运算与数据可视化(一)(共41页).pptx 中山大学 数学实验与数学软件 第14章 MATLAB数字图像处理初步(共42页).pptx 中山大学 数学实验与数学软件 第15章 MATLAB数据可视化(二)(共43页).pptx 中山大学 数学实验与数学软件 第16章 MATLAB期末复习与样题(共37页).pptx 中山大学 数学实验与数学软件 第17章 MATLAB其他常用功能与前沿应用选讲(共41页).pptx
【课程简介】 (1)本课程特别适用于MATLAB爱好者,尤其适用于热衷于用MATLAB求解高等数学问题、图像处理问题、工程计算等问题。 (2)通过本课程,你将学习到如何使用MATLAB,如何用MATLAB求解高等数学中的计算问题,可以从计算机程序视角了解到数学公式的计算原理。另外,本课程还结合了众多实例案例,让你深入了解MATLAB的数据处理之美。 【完整课程列表】 中山大学 数学实验与数学软件 第01章 MATLAB软件入门(共46页).pptx 中山大学 数学实验与数学软件 第02章 MATLAB编辑器与符号计算(一)(共43页).pptx 中山大学 数学实验与数学软件 第03章 MATLAB符号计算(二) (共41页).pptx 中山大学 数学实验与数学软件 第04章 MATLAB符号计算(三)(共47页).pptx 中山大学 数学实验与数学软件 第05章 MATLAB数值数组与数组化编程(共42页).pptx 中山大学 数学实验与数学软件 第06章 MATLAB矩阵函数与程序设计初步(共38页).pptx 中山大学 数学实验与数学软件 第07章 MATLAB数值微积分(共32页).pptx 中山大学 数学实验与数学软件 第08章 MATLAB微分方程数值解法(共33页).pptx 中山大学 数学实验与数学软件 第09章 MATLAB数值线性代数(共29页).pptx 中山大学 数学实验与数学软件 第10章 MATLAB进阶程序设计与问题求解(共40页).pptx 中山大学 数学实验与数学软件 第11章 MATLAB概率统计与曲线拟合(共45页).pptx 中山大学 数学实验与数学软件 第12章 MATLAB数字信号与声音处理(共36页).pptx 中山大学 数学实验与数学软件 第13章 MATLAB多项式运算与数据可视化(一)(共41页).pptx 中山大学 数学实验与数学软件 第14章 MATLAB数字图像处理初步(共42页).pptx 中山大学 数学实验与数学软件 第15章 MATLAB数据可视化(二)(共43页).pptx 中山大学 数学实验与数学软件 第16章 MATLAB期末复习与样题(共37页).pptx 中山大学 数学实验与数学软件 第17章 MATLAB其他常用功能与前沿应用选讲(共41页).pptx
【课程简介】 (1)本课程特别适用于MATLAB爱好者,尤其适用于热衷于用MATLAB求解高等数学问题、图像处理问题、工程计算等问题。 (2)通过本课程,你将学习到如何使用MATLAB,如何用MATLAB求解高等数学中的计算问题,可以从计算机程序视角了解到数学公式的计算原理。另外,本课程还结合了众多实例案例,让你深入了解MATLAB的数据处理之美。 【完整课程列表】 中山大学 数学实验与数学软件 第01章 MATLAB软件入门(共46页).pptx 中山大学 数学实验与数学软件 第02章 MATLAB编辑器与符号计算(一)(共43页).pptx 中山大学 数学实验与数学软件 第03章 MATLAB符号计算(二) (共41页).pptx 中山大学 数学实验与数学软件 第04章 MATLAB符号计算(三)(共47页).pptx 中山大学 数学实验与数学软件 第05章 MATLAB数值数组与数组化编程(共42页).pptx 中山大学 数学实验与数学软件 第06章 MATLAB矩阵函数与程序设计初步(共38页).pptx 中山大学 数学实验与数学软件 第07章 MATLAB数值微积分(共32页).pptx 中山大学 数学实验与数学软件 第08章 MATLAB微分方程数值解法(共33页).pptx 中山大学 数学实验与数学软件 第09章 MATLAB数值线性代数(共29页).pptx 中山大学 数学实验与数学软件 第10章 MATLAB进阶程序设计与问题求解(共40页).pptx 中山大学 数学实验与数学软件 第11章 MATLAB概率统计与曲线拟合(共45页).pptx 中山大学 数学实验与数学软件 第12章 MATLAB数字信号与声音处理(共36页).pptx 中山大学 数学实验与数学软件 第13章 MATLAB多项式运算与数据可视化(一)(共41页).pptx 中山大学 数学实验与数学软件 第14章 MATLAB数字图像处理初步(共42页).pptx 中山大学 数学实验与数学软件 第15章 MATLAB数据可视化(二)(共43页).pptx 中山大学 数学实验与数学软件 第16章 MATLAB期末复习与样题(共37页).pptx 中山大学 数学实验与数学软件 第17章 MATLAB其他常用功能与前沿应用选讲(共41页).pptx
【课程简介】 (1)本课程特别适用于MATLAB爱好者,尤其适用于热衷于用MATLAB求解高等数学问题、图像处理问题、工程计算等问题。 (2)通过本课程,你将学习到如何使用MATLAB,如何用MATLAB求解高等数学中的计算问题,可以从计算机程序视角了解到数学公式的计算原理。另外,本课程还结合了众多实例案例,让你深入了解MATLAB的数据处理之美。 【完整课程列表】 中山大学 数学实验与数学软件 第01章 MATLAB软件入门(共46页).pptx 中山大学 数学实验与数学软件 第02章 MATLAB编辑器与符号计算(一)(共43页).pptx 中山大学 数学实验与数学软件 第03章 MATLAB符号计算(二) (共41页).pptx 中山大学 数学实验与数学软件 第04章 MATLAB符号计算(三)(共47页).pptx 中山大学 数学实验与数学软件 第05章 MATLAB数值数组与数组化编程(共42页).pptx 中山大学 数学实验与数学软件 第06章 MATLAB矩阵函数与程序设计初步(共38页).pptx 中山大学 数学实验与数学软件 第07章 MATLAB数值微积分(共32页).pptx 中山大学 数学实验与数学软件 第08章 MATLAB微分方程数值解法(共33页).pptx 中山大学 数学实验与数学软件 第09章 MATLAB数值线性代数(共29页).pptx 中山大学 数学实验与数学软件 第10章 MATLAB进阶程序设计与问题求解(共40页).pptx 中山大学 数学实验与数学软件 第11章 MATLAB概率统计与曲线拟合(共45页).pptx 中山大学 数学实验与数学软件 第12章 MATLAB数字信号与声音处理(共36页).pptx 中山大学 数学实验与数学软件 第13章 MATLAB多项式运算与数据可视化(一)(共41页).pptx 中山大学 数学实验与数学软件 第14章 MATLAB数字图像处理初步(共42页).pptx 中山大学 数学实验与数学软件 第15章 MATLAB数据可视化(二)(共43页).pptx 中山大学 数学实验与数学软件 第16章 MATLAB期末复习与样题(共37页).pptx 中山大学 数学实验与数学软件 第17章 MATLAB其他常用功能与前沿应用选讲(共41页).pptx
以下是用C++实现多项式矩阵乘法的示例代码: ```c++ #include <iostream> #include <vector> using namespace std; // 定义多项式结构体 struct polynomial { vector<int> coefficients; // 存储多项式系数 int degree; // 存储多项式次数 }; // 多项式矩阵乘法函数 vector<polynomial> polynomialMatrixMultiplication(vector<vector<polynomial>>& A, vector<vector<polynomial>>& B) { int n = A.size(), m = A[0].size(), l = B[0].size(); vector<polynomial> result(l, {vector<int>(n), -1}); // 初始化结果矩阵 for (int i = 0; i < n; i++) { for (int j = 0; j < l; j++) { for (int k = 0; k < m; k++) { if (A[i][k].degree == -1 || B[k][j].degree == -1) continue; // 如果两个多项式次数均为-1,则跳过 if (result[j].degree == -1) result[j].degree = 0; result[j].coefficients[i] += A[i][k].coefficients[0] * B[k][j].coefficients[0]; // 计算乘积的系数 } if (result[j].degree == -1) result[j].coefficients.pop_back(); // 如果结果多项式次数仍为-1,则删除系数 else { result[j].degree = n - 1; // 更新结果多项式次数 for (int k = n - 1; k >= 0; k--) { if (result[j].coefficients[k] != 0) break; // 如果系数不为0,则更新多项式次数 result[j].degree--; } } } } return result; } // 测试样例 int main() { // 初始化矩阵A vector<vector<polynomial>> A = { {{1, 2}, 1}, {{3, 4}, 1} }; // 初始化矩阵B vector<vector<polynomial>> B = { {{5}, 0}, {{6}, 0}, {{7}, 0} }; // 多项式矩阵乘法 vector<polynomial> result = polynomialMatrixMultiplication(A, B); // 输出结果 for (int i = 0; i < result.size(); i++) { cout << "Result[" << i << "]: "; for (int j = 0; j < result[i].coefficients.size(); j++) { cout << result[i].coefficients[j] << " "; } cout << endl; } return 0; } ``` 这段代码中,我们首先定义了一个多项式结构体,其中包含一个向量用于存储多项式系数,以及一个整数用于存储多项式次数。接着,我们定义了一个多项式矩阵乘法函数,该函数接收两个多项式矩阵A和B作为参数,并返回它们的乘积。在函数中,我们使用三重循环来计算乘积的每个元素,如果两个多项式次数均为-1,则跳过。最后,我们输出了结果矩阵。在主函数中,我们初始化了矩阵A和B,并对多项式矩阵乘法函数进行了测试。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值