时间限制:1.0s 内存限制:256.0MB
问题描述
小明最近在为线性代数而头疼,线性代数确实很抽象(也很无聊),可惜他的老师正在讲这矩阵乘法这一段内容。
当然,小明上课打瞌睡也没问题,但线性代数的习题可是很可怕的。
小明希望你来帮他完成这个任务。
现在给你一个ai行aj列的矩阵和一个bi行bj列的矩阵,
要你求出他们相乘的积(当然也是矩阵)。
(输入数据保证aj=bi,不需要判断)
输入格式
输入文件共有ai+bi+2行,并且输入的所有数为整数(long long范围内)。
第1行:ai 和 aj
第2~ai+2行:矩阵a的所有元素
第ai+3行:bi 和 bj
第ai+3~ai+bi+3行:矩阵b的所有元素
输出格式
输出矩阵a和矩阵b的积(矩阵c)
(ai行bj列)
样例输入
2 2
12 23
45 56
2 2
78 89
45 56
样例输出
1971 2356
6030 7141
vector 创建二维数组
#include<bits/stdc++.h>
using namespace std;
#define pi=3.1415926536
int main(){
int i,n1,m1,n2,m2,k=1;
scanf("%d%d",&n1,&m1);
vector<vector<long long int> > a(n1,vector<long long int>(m1));
for(i=0;i<n1;i++)
{
for(int j=0;j<m1;j++)
{
cin>>a[i][j];
}
}
scanf("%d%d",&n2,&m2);
vector<vector<long long int> > b(n2,vector<long long int>(m2));
for(i=0;i<n1;i++)
{
for(int j=0;j<m1;j++)
{
cin>>b[i][j];
}
}
vector<vector<long long int> > c(n1,vector<long long int>(m2));
for(i=0;i<n1;i++)
{
for(int j=0;j<m2;j++){
int k=0;
for(int p=0;p<m1;p++)
k=k+a[i][p]*b[p][j];
c[i][j]=k;
}
}
for(i=0;i<n1;i++)
{
for(int j=0;j<m2;j++){
cout<<c[i][j]<<" ";
}
printf("\n");
}
return 0;
}