问题介绍
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在 8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
思路分析
1)第一个皇后先放第一行第一列
2)第二个皇后放在第二行第一列、然后判断是否 OK,如果不 OK,继续放在第二列、第三列、依次把所有列都
放完,找到一个合适
3)继续第三个皇后,还是第一列、第二列……直到第 8个皇后也能放在一个不冲突的位置,算是找到了一个正确
解
4)当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,
全部得到.
5)然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4的步骤
通俗来讲
如果觉得上面的思路理解的不是很明白,或者看不懂,我在这给大家分享下我自己的理解
如图所示,首先我们是一个8乘8的棋盘,8乘8的棋盘要放8个棋子并且所有棋子不能在同一行同一列同一斜线上,则每行每列只能放一个棋子,所以我们首先在第一行第一列放一枚棋子,然后在第二行开始放棋子,每放一枚棋子必须和检查前面的棋子,如果违反规则就将棋子向下一列移动,直到能放下,因为放棋子使用递归来实现的,如果在放第n枚棋子的时候,经过检查发现放在这一行的每一列都不符合规则,则会回溯到第n-1枚棋子,然后改变他的列数。如果也没有能落子的地方,则继续回溯到第n-2枚棋子,以此类推,直到所有棋子都能放下
实现代码
这个代码有两个难理解的点,第一就是一定要理解这个array数组,array[i]=value表示第i+1个皇后放在第i+1行的第value+1列,第二就是判断是否在同一条斜线上的判定依据,if(array[i] == array[n] || Math.abs(n-i) == Math.abs(array[n] - array[i]) )其实就是判定两个棋子的行距是否等于列距,若等于说明他们在同一条斜线上
package recursion;
public class Queen8 {
//定义一个max表示共有多少个皇后
int max = 8;
//定义数组array, 保存皇后放置位置的结果,比如 arr = {0 , 4, 7, 5, 2, 6, 1, 3}
//array[i]=value表示第i+1个皇后放在第i+1行的第value+1列
int[] array = new int[max];
static int count = 0;
public static void main(String[] args) {
//测试一把 , 8皇后是否正确
Queen8 queen8 = new Queen8();
queen8.check(0);
System.out.printf("一共有%d解法", count);
}
//编写一个方法,放置第n个皇后
//特别注意: check 是 每一次递归时,进入到check中都有 for(int i = 0; i < max; i++),因此会有回溯
private void check(int n) {
if(n == max) { //n = 8 , 其实8个皇后就既然放好
print();
return;
}
//依次放入皇后,并判断是否冲突
for(int i = 0; i < max; i++) {
//先把当前这个皇后 n , 放到该行的第1列
array[n] = i;
//判断当放置第n个皇后到i列时,是否冲突
if(judge(n)) { // 不冲突
//接着放n+1个皇后,即开始递归
check(n+1); //
}
//如果冲突,就继续执行 array[n] = i; 即将第n个皇后,放置在本行得 后移的一个位置
}
}
//查看当我们放置第n个皇后, 就去检测该皇后是否和前面已经摆放的皇后冲突
/**
*
* @param n 表示第n个皇后
* @return true:不冲突 false:冲突
*/
private boolean judge(int n) {
for(int i = 0; i < n; i++) {
// 说明
//1. array[i] == array[n] 表示判断 第n个皇后是否和前面的n-1个皇后在同一列
//2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后是否在同一斜线
// n = 1 放置第 2列 1 n = 1 array[1] = 1
// Math.abs(1-0) == 1 Math.abs(array[n] - array[i]) = Math.abs(1-0) = 1
//3. 判断是否在同一行, 没有必要,n 每次都在递增
if(array[i] == array[n] || Math.abs(n-i) == Math.abs(array[n] - array[i]) ) {
return false;
}
}
return true;
}
//写一个方法,可以将皇后摆放的位置输出
private void print() {
count++;
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
System.out.println();
}
}
代码结果
因为有92种结果,所以我只截了部分结果