普利姆算法生成最小生成树

普里姆算法介绍

普利姆(Prim)算法求最小生成树,也就是在包含 n个顶点的连通图中,找出只有(n-1)条边包含所有 n个顶点的连通子图,也就是所谓的极小连通子图

什么是最小生成树

最小生成树(Minimum Cost Spanning Tree),简称 MST。给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树,如图

在这里插入图片描述
简而言之,最小生成树就是将图中所有节点连通并且要求,边的权值最小的树

普利姆算法的步骤

1)设 G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合

2)若从顶点 u开始构造最小生成树,则从集合 V中取出顶点 u放入集合 U中,标记顶点 v的 visited[u]=1

3)若集合 U中顶点 ui与集合 V-U中的顶点 vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点 vj加入集合 U中,将边(ui,vj)加入集合 D中,标记 visited[vj]=1

4)重复步骤②,直到 U与 V相等,即所有顶点都被标记为访问过,此时 D中有 n-1条边

如果光看步骤估计很难有人看懂,所以我们依据实例来说明

应用场景-修路问题

看一个应用场景和问题:

1)有胜利乡有 7个村庄(A, B, C, D, E, F, G),现在需要修路把 7个村庄连通

2)各个村庄的距离用边线表示(权),比如A– B距离5公里

3)问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?

在这里插入图片描述

思路:将 10条边,连接即可,但是总的里程数不是最小.正确的思路,就是尽可能的选择少的路线,并且每条路线最小,保证总里程数最少

其实普利姆算法的思想很简单,就拿这张图来说,如果我们从A点出发。我们就找A点的路里权值最短的,如图,A的路有三条,分别是<A,G>,<A,C>,<A,B>,而这三条路中,明显<A,G>的权值2最小,所以我们连通A-G,然后接下来我们以<A,G>为出发点,再去找的权值最小路,显然<G,B>的权值最小,我们把B也添加进去,现在变成了<A,G,B>然后继续找权值最小的路,因为路的数量=顶点数-1,当我们找到的路的数量等于7-1=6时,说明我们已经找完了,最后咱们找到的所有路的集合就是我们要求的最小生成树。

在这里插入图片描述

代码

public class PrimAlgorithm {
public static void main(String[] args) {
//测试看看图是否创建  ok
char[] data = new char[]{'A','B','C','D','E','F','G'};
int verxs = data.length;
//邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
int [][]weight=new int[][]{
{10000,5,7,10000,10000,10000,2},
{5,10000,10000,9,10000,10000,3},
{7,10000,10000,10000,8,10000,10000},
{10000,9,10000,10000,10000,4,10000},
{10000,10000,8,10000,10000,5,4},
{10000,10000,10000,4,5,10000,6},
{2,3,10000,10000,4,6,10000},};
//创建 MGraph对象
MGraph graph = new MGraph(verxs);
//创建一个 MinTree对象
MinTree minTree = new MinTree();
minTree.createGraph(graph, verxs, data, weight);
//输出
minTree.showGraph(graph);
//测试普利姆算法
minTree.prim(graph, 1);//
}
}
//创建最小生成树->村庄的图
class MinTree {
//创建图的邻接矩阵
/**
*
* @param graph图对象
* @param verxs图对应的顶点个数
* @param data图的各个顶点的值
* @param weight图的邻接矩阵
*/
public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
int i, j;
for(i = 0; i < verxs; i++) {//顶点
graph.data[i] = data[i];
for(j = 0; j < verxs; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}
//显示图的邻接矩阵
public void showGraph(MGraph graph) {
for(int[] link: graph.weight) {
System.out.println(Arrays.toString(link));
}
}
//编写 prim算法,得到最小生成树
/**
*
* @param graph图
* @param v表示从图的第几个顶点开始生成'A'->0  'B'->1...
*/
public void prim(MGraph graph, int v) {
//visited[]标记结点(顶点)是否被访问过
int visited[] = new int[graph.verxs];
//visited[]默认元素的值都是  0,表示没有访问过
for(int i =0; i <graph.verxs; i++) {
visited[i] = 0;
//
//
//
}
//把当前这个结点标记为已访问
visited[v] = 1;
//h1和   h2记录两个顶点的下标
int h1 = -1;
int h2 = -1;
int minWeight = 10000; //将 minWeight初始成一个大数,后面在遍历过程中,会被替换
for(int k = 1; k < graph.verxs; k++) {//因为有  graph.verxs顶点,普利姆算法结束后,有 graph.verxs-1边

//这个是确定每一次生成的子图,和哪个结点的距离最近
for(int i = 0; i < graph.verxs; i++) {// i结点表示被访问过的结点
for(int j = 0; j< graph.verxs;j++) {//j结点表示还没有访问过的结点
if(visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
//替换 minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
minWeight = graph.weight[i][j];
h1 = i;
h2 = j;
}
}
}
//找到一条边是最小
System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + ">权值:" + minWeight);
//将当前这个结点标记为已经访问
visited[h2] = 1;
//minWeight重新设置为最大值   10000
minWeight = 10000;
}
}
}

class MGraph {
int verxs; //表示图的节点个数
char[] data;//存放结点数据
int[][] weight; //存放边,就是我们的邻接矩阵
public MGraph(int verxs) {
this.verxs = verxs;
data = new char[verxs];
weight = new int[verxs][verxs];
}
}


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值