活动地址:CSDN21天学习挑战赛
学习日记
1,学习知识点
numpy模块
2,学习遇到的问题
初次学习,不太熟练
3,学习的收获
NumPy 是 Python 语言的一个第三方库,其支持大量高维度数组与矩阵运算。此外,NumPy 也针对数组运算提供大量的数学函数。机器学习涉及到大量对数组的变换和运算,NumPy 就成了必不可少的工具之一。
作用:NumPy是一个运行速度非常快的数学库,主要用于数组计算
包含:
一个强大的N维数组对象ndarray
广播功能函数
线性代数、傅里叶变换、随机数生成等功能
优势:
- 对于同样的数值计算任务,使用numpy要比直接编写Python代码便捷的多
- numpy中的数组的存 储效率和输入输出性能均远远优于Python中等价的基本数据结构,且其能够提升性能是与数组中的元素成比例的
- numpy的大部分代码都是用C语言写的,其底层算法在设计时就有着优异的性能,这使得numpy比纯Python代码高效得多
ndarray对象:
NumPy定义了一个n维数组对象,简称ndarray对象,它是一个一系列相同类型元素组成的数组集合。数组中的每个元素都占有大小相同的内存块
ndarray对象采用了数组的索引机制,将数组中的每个元素映射到内存块上,并且按照一定的布局对内存块进行排列(行或列)。
4,实操
安装
numpy
,输入对应的pip命令:pip install numpy
导包:
import numpy as np
numpy模块的基本使用
1. numpy数据类型
numpy支持的数据类型比Python内置的类型要多很多,基本上可以和C语言的数据类型对应上,其中部分类型对应为Python内置的类型
numpy的数值类型实际上是dtype对象的实例,并对应唯一-的字符, 包括np.bool_ ,np.int32,np.float32, 等等
类型 | 类型代码 | 说明 |
---|---|---|
int8、uint8 | i1、u1 | 有符号和无符号的8位(1个字节) 整型 |
int16, uint16 | i2、u2 | 有符号和无符号的16位(2个字节) 整型 |
int32、uint32 | i4、u4 | 有符号和无符号的32位(4个字节) 整型 |
int64、uint64 | i8、u8 | 有符号和无符号的64位(8个字节) 整型 |
float16< |