算法阅读学习

14天阅读挑战赛
努力是为了不平庸~
算法学习有些时候是枯燥的,这一次,让我们先人一步,趣学算法!欢迎记录下你的那些努力时刻(算法学习知识点/算法题解/遇到的算法bug/等等),在分享的同时加深对于算法的理解,同时吸收他人的奇思妙想,一起见证技术er的成长~

 

算法题目描述

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

 
示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。


示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4


示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1
 

提示:

1 <= nums.length <= 2500
-104 <= nums[i] <= 104
 

做题思路

动态规划
 

定义 \textit{dp}[i]dp[i] 为考虑前 ii 个元素,以第 ii 个数字结尾的最长上升子序列的长度,注意 \textit{nums}[i]nums[i] 必须被选取。

我们从小到大计算 \textit{dp}dp 数组的值,在计算 \textit{dp}[i]dp[i] 之前,我们已经计算出 \textit{dp}[0 \ldots i-1]dp[0…i−1] 的值,则状态转移方程为:

\textit{dp}[i] = \max(\textit{dp}[j]) + 1, \text{其中} \, 0 \leq j < i \, \text{且} \, \textit{num}[j]<\textit{num}[i]
dp[i]=max(dp[j])+1,其中0≤j<i且num[j]<num[i]

即考虑往 \textit{dp}[0 \ldots i-1]dp[0…i−1] 中最长的上升子序列后面再加一个 \textit{nums}[i]nums[i]。由于 \textit{dp}[j]dp[j] 代表 \textit{nums}[0 \ldots j]nums[0…j] 中以 \textit{nums}[j]nums[j] 结尾的最长上升子序列,所以如果能从 \textit{dp}[j]dp[j] 这个状态转移过来,那么 \textit{nums}[i]nums[i] 必然要大于 \textit{nums}[j]nums[j],才能将 \textit{nums}[i]nums[i] 放在 \textit{nums}[j]nums[j] 后面以形成更长的上升子序列。

最后,整个数组的最长上升子序列即所有 \textit{dp}[i]dp[i] 中的最大值。

\text{LIS}_{\textit{length}}= \max(\textit{dp}[i]), \text{其中} \, 0\leq i < n
LIS
length =max(dp[i]),其中0≤i<n

 

模板代码

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int n = (int)nums.size();
        if (n == 0) {
            return 0;
        }
        vector<int> dp(n, 0);
        for (int i = 0; i < n; ++i) {
            dp[i] = 1;
            for (int j = 0; j < i; ++j) {
                if (nums[j] < nums[i]) {
                    dp[i] = max(dp[i], dp[j] + 1);
                }
            }
        }
        return *max_element(dp.begin(), dp.end());
    }
};

复杂度分析

时间复杂度:O(n^2),其中 n 为数组 nums 的长度。动态规划的状态数为 n,计算状态 dp[i] 时,需要 O(n) 的时间遍历 dp[0…i−1] 的所有状态,所以总时间复杂度为 O(n^2)。

空间复杂度:O(n),需要额外使用长度为 n 的 dp 数组。

算法题目描述

二维区域和检索-矩阵不可变

给定一个二维矩阵 matrix,以下类型的多个请求:

计算其子矩形范围内元素的总和,该子矩阵的 左上角 为 (row1, col1) ,右下角 为 (row2, col2) 。
实现 NumMatrix 类:

NumMatrix(int[][] matrix) 给定整数矩阵 matrix 进行初始化
int sumRegion(int row1, int col1, int row2, int col2) 返回 左上角 (row1, col1) 、右下角 (row2, col2) 所描述的子矩阵的元素 总和 。
 

示例 1:

 

输入:
["NumMatrix","sumRegion","sumRegion","sumRegion"]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出:
[null, 8, 11, 12]

解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)
 

提示:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
-105 <= matrix[i][j] <= 105
0 <= row1 <= row2 < m
0 <= col1 <= col2 < n
最多调用 104 次 sumRegion 方法

做题思路

一维前缀和
 题中,初始化时对数组计算前缀和,每次检索即可在 O(1) 的时间内得到结果。可以将题的做法应用于这道题,初始化时对矩阵的每一行计算前缀和,检索时对二维区域中的每一行计算子数组和,然后对每一行的子数组和计算总和。

具体实现方面,创建 m 行 n+1 列的二维数组 sums,其中 m 和 n 分别是矩阵 matrix 的行数和列数,sums[i] 为 matrix[i] 的前缀和数组。将 sums 的列数设为 n+1 的目的是为了方便计算每一行的子数组和,不需要对 col1=0 的情况特殊处理。

模板代码

class NumMatrix {
public:
    vector<vector<int>> sums;

    NumMatrix(vector<vector<int>>& matrix) {
        int m = matrix.size();
        if (m > 0) {
            int n = matrix[0].size();
            sums.resize(m, vector<int>(n + 1));
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j++) {
                    sums[i][j + 1] = sums[i][j] + matrix[i][j];
                }
            }
        }
    }

    int sumRegion(int row1, int col1, int row2, int col2) {
        int sum = 0;
        for (int i = row1; i <= row2; i++) {
            sum += sums[i][col2 + 1] - sums[i][col1];
        }
        return sum;
    }
};

复杂度分析

时间复杂度:初始化 O(mn),每次检索 O(m),其中 m 和 n 分别是矩阵 matrix 的行数和列数。
初始化需要遍历矩阵 matrix 计算二维前缀和,时间复杂度是 O(mn)。
每次检索需要对二维区域中的每一行计算子数组和,二维区域的行数不超过 m,计算每一行的子数组和的时间复杂度是 O(1),因此每次检索的时间复杂度是 O(m)。

空间复杂度:O(mn),其中 m 和 n 分别是矩阵 matrix 的行数和列数。需要创建一个 m 行 n+1 列的前缀和数组 sums。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值