如何用NLP技术和标题党说拜拜-文本摘要

点这里排版好

拖延症 拖了一个星期 ?‍♀️
然后在查文献的时候 发现中文的资料比较少 于是

文本摘要 算是NLP领域一个还实用的细分领域吧

其实按我的理解 文本摘要 是一个披着NLP外衣的CV领域内容(至于为什么 请dalao往下面看)

想想一下 每每看见震惊 公交车上? 有男子做出如此不堪的事这样的标题

可能不自觉的就脑补 一些 你以为会发生的事

结果 点开 链接 发现 这根本就不是你想想的那会事

然后 你会痛骂一身标题党 小gg 然后默默的关闭了网页

如果在你点开链接之前 已经有一个整理好的概述 这个时候 是不是标题党 就一目了然了

文本摘要 解决的 就是 在大数据环境下 如何利用NLP技术 对文章进行概括

feature era

早在上世纪五十年代 就有学者开始研究Text Summarization问题 提出利用诸如词频 首段 首句 标题等等一些特征值 对文章进行自动化概括

本质上来说 这些 都是属于特征工程范畴的工作 利用一些人类认知上的明显的特征关系 找到文章与生成的摘要之间的匹配关系

当然可以想象到 纯人力挖掘 特征 能达到的效果有限

但限于 算力的制约 一直到近年 随着深度学习在ImageNet上崭露头角 才稍有起色

[外链图片转存失败(img-MDHFcY2t-1566641443683)(https://cdn.nlark.com/yuque/0/2018/png/104214/1545572810420-c4c705a5-0298-43cc-bc13-2170720f9236.png "")]

Extractive Vs Abstractive

因为我们已经对NLP领域问题分析的套路 已经有一些 认识

以上的 思路 主要是从 文本中原有信息 根据人类普遍意识上的认识 提取出对应于文章的一段文字 这是一种Extractive方法

很容易想到 除了 抽取之外 还可以通过对NN Output的参数 进行 decoder操作 进行Abstractive操作

生成式的思维 其实 更 符合人类习惯 但 相对于 现有的技术而言 效果 会比较差

之前 我们 在多轮检索式对话中 分析的 也是抽取式的模型

我们对 检索式的大致套路 已经 有所 了解

先对 原有的文本做一个表示 可以是word 粒度的 也可以是上下文粒度的

在QA问题上 从基于表示的思路变换到基于交互的思路

但 QA问题和摘要问题 侧重点 不太一样

QA 更 能反映NLP问题的时序性 对话中 上一句 接着 下一句

在对话过程中 Topic很重要 非停用词很重要 语言风格也很重要 但Topic可能变化 语言风格也可能变化 停用词 也许会变成至关重要的

对话系统侧重 抓取时序上的信息

而Text summarization这个问题中 侧重于Topic的挖掘 时序上的信息 变得没那么重要

直观上感受 文本挖掘 只要从一篇已有的文章中 从排好队的词阵列 中 抽取这篇文章最重要的词 组成它的摘要

这一点 就和 图像识别 很类似-从一张已有的图片中 根据像素分布 抽取出 能代表周围一块区域的特征

所以 目前 Text Summarization 领域中 效果比较好的还是CNN与seq2seq结合的模型

(当然QA也一样 会用到CNN 那里的CNN做的 也同样是抽象的功能)

Extractive

抽取特征的思路 可以分为 抽取主题 和 抽取指示符

  • 抽取主题 方法, 比如说 浅语义LSA、LDA 词频 主题词 贝叶斯 et al.
    • 这种方法 侧重于 试图 寻找语义上的 主题
  • 指示符(你可以粗暴的理解为特征):
    • 比如说: 句子长的可能是更重要的 在文档中位置靠前的可能更重要 具有Title中某些词的句子可能更重要

Extrative 然后 根据 这些 方法 对每个句子进行 一个评分的操作

然后一样的套路根据这个评分 召回可能重要的k个句子

再对这k个句子 做加工 比如说贪心的认为@1的是这个文章的摘要 也有模型针对最大化整体一致性最小化冗余进行优化

除了 抽取特征的思路之外 还有基于知识库(对vertical domain 进行分析)

Topic Words

在Toipic word是的思路下 有诸如

  • 词频阈值: 词频超过一个阈值的情况下 它就是主题词
  • 主题签名词: 有些时候 主题 可以通过多种多样的词语表示 每个主题签名词的词频并不一定高
    • 通过建立对数似然估计检验 来 识别 这些 主题签名词
    • 可以是计算主题签名词数量的频次 (偏向长句子)
    • 也可以是计算主题签名词的占比句子中总词数的比例 (偏向高主题词密度句)

Frequent-driven

词频方法 较为简单 主要是直接算词频 或者 利用Tf-Idf计算词频

Latent Semantic Analysis

浅语义 主要 就是 做矩阵分解 计算SVD 那么得到的中间矩阵就可以看作为原矩阵的Topic

当然 LSA之后 还有基于Dirichlet分布的LDA

Graph Method

基于PageRank的思想 把文章 抽象为graph 其中句子 代表graph中的节点 边权值则为句子和句子之间的相似度

最简单的相似度的做法 就是 Tf-idf

要想获得更好的效果可以 尝试 用一下QA中使用的基于基于交互、双向GRU、Transform等等办法

计算出 各边值之后 就按照PageRank的思路 计算 重要节点 这些重要节点 就是我们需要的摘要句子

讲到这里 我们不难想到 如何 把之前多轮检索式对话系统 中 用到的计算context-reply之间关联度的方法 用在这里

可能会有不错的效果 但 老年人 不能安逸与现状 对吧 检索式 我们做过了 生成式 还没有实践过 so ?

Graph方法 比较有名的 比如说LexRank, TextRank

Mechanical Learning

本质上 抽取式文本摘要 也是 一个分类问题 把所有文本 分类为 是文本摘要 和 不是文本摘要的

分类问题 就有很多操作的空间 比如说 用朴素贝叶斯 决策树 SVM HMM

但 样本集标注信息 较难取得 故有学者提出半监督的模型

通过同时训练两个分类器 每次迭代时 把具有最高分的未标记训练集扔到标记训练集中 以此迭代

Abstractive

随着NN及seq2seq对机器翻译上表现出的显著提升

相应的技术也逐渐应用在Text Summarization领域上

实际上 在文本摘要这个领域中 很多技术是借鉴与机器翻译的

比如说受到NMT(Neural Machine Translation)中Attention和NN的应用的启发,有学者提出NNLM(Neural Network Language Model)结构

之后 有人用RNN代替NNLM 比如说ABS什么的

在这样的模型中会出现几个问题

  • 不能像抽取式一样获取到文本的重要消息
  • 无法处理OOV(out-of-vocabulary)问题
    • 当然我觉得OOV是预处理不好产生的问题
    • OOV就是test dataset中存在train model建立的词表中没有的词
    • 像这个问题 可以简单粗暴的把OOV用零向量或者<UNK>代替 丢到NN中训练
    • 也可以用char-level粒度的模型
    • 要么优化你的分词器
    • 再有就是用FastText
  • 然后还有一个比较关键的是词句重复
  • Seq2seq模型还会出现exposure bias训练与预测结果不一致
    • Exposure bias指的是训练时,输出是有真实的输入决定的; 而预测时,输出由前一个生成的输出决定的,这就导致因为生成的误差累计造成最后一层输出较大的偏差
    • 训练和预测评价不一致是因为我们在评价这类问题使用的是不可微分的指标比如说ROUGH,而Loss函数用的是对数似然估计不一致。这个可以通过强化学习(RL)来缓解
    • 有很多学者基于RL做了一些工作 有不错的结果

我们知道在NLP中 处理语句时序信息的分析 常见的套路就是RNN系 什么LSTM Bi-LSTM GRU Bi-GRU

但在数据量比较的大的时候 比如说海量文本摘要分析这个问题上

RNN因为要前后迭代 复杂度 较大 会出现梯度消失 梯度爆炸?的问题 (其中有学者提出梯度范数裁剪解决这个问题)

因为Text Summarization 这个问题 没有 QA那么强的时序性要求 实验发现利用CNN也有较好的效果

在这种CNN-seq2seq模型中 先用一个encoder的CNN把原文映射到Hidden层上去 然后根据这个Hidden层输出的值 再用一个decoder的CNN输出生成的摘要

[外链图片转存失败(img-ANMJzYPL-1566641443684)(https://cdn.nlark.com/yuque/0/2018/png/104214/1545614892194-3d023a02-8a9f-4ac7-997e-080cecb10cb0.png "")]

ConvS2S

[Jonas Gehring et.al. ICML 17]

ConvS2S = Convolutional Sequence to Sequence Learning

这篇论文是Facebook工作很久的产物 去年发出来 和 现在Bert差不多的效果

CNN相较于RNN而言 可以并行 而且不会出现梯度消失 可以更好的选取长距离的信息(这 太像Transform了吧)

[外链图片转存失败(img-27bdfFlX-1566641443685)( https://cdn.nlark.com/yuque/0/2018/png/104214/1545617656324-d32ba8b1-94b9-4a4c-8cdb-11c793abe0b4.png "")]

ConvS2S 采用的是带Attention的Encoder-decoder结构 其中encoder和decoder用的是相同的卷积结构

(在ConvS2S上面 我看到了Bert的影子)

首先 ConvS2S 采用了Transform 或者说Bert 中使用的Position Embedding 然后 也是和Bert一样 简单粗暴的把Position Embedding 和 word Embedding加和在一起

我们再来复习一下Bert 可以发现Bert的word Embedding比他好一丢丢(类似完形填空的深度双向Encoding) 除了上述两个Embedding之外 还加了一个句粒度的负采样Segment Embedding

只不过 在这里 处理好的Embedding是丢到CNN中训练 而不是丢到Attention中训练

在ConvS2S中 除了 传统的CNN之外 还有一层 Multi-step Attention

这里的 Attention 权重 是由当前层decoder输出 和 所有层 encoder加权决定的

这样使得模型 在考虑下一个decoder的时候 之前已经Attention过的词 也能占到不少的权重

ConvS2S使用GLU做gate mechanism

然后 ConvS2S还进行了梯度裁剪 权重初始值等优化 使得模型很快 很work

最后将decoder输出与encoder的输出做dot 构造 对齐矩阵

Topic-ConvS2S

[Shashi Narayan et.al. EMNLP 18]

这篇文章是爱丁堡大学的dalao在今年EMNLP上发表的成果

之前我们做的Text Summarization多少都用到点抽取到的信息即使是生成式的任务

这篇文章想完成一个极端概括的任务 把大段的文章用一句话概括

这个任务 就和 文章的Title 不一样 Title目的是让读者有兴趣 去阅读这篇文章

而概括这是需要考虑到散布在文章各个区域的信息

Topic-ConvS2S主要的工作 一个是建立XSum DataSet 然后就是把Topic 和ConvS2S结合在一起

模型利用LDA获取一层Topic Sensitive Embedding

e i = [ ( x i + p i ) ; ( t i ′ e_i=[(x_i+p_i);(t_i&#x27; ei=[(xi+pi);(ti t D ) ] ∈ R f + f ′ t_D)]\in R^{f+f&#x27;} tD)]Rf+f

其中 x i x_i xi为word Embedding, p i p_i pi为Position Embedding, t i t_i ti为文档中单词的分布, t D t_D tD为文档中主题的分布

通过构造 e i e_i ei来获取关于Topic的Embedding信息

其他的和ConvS2S基本一致 同样用到两个相同的encoder-decoder卷积结构 同样是Mult-step Attention 连图都很像是吧

[外链图片转存失败(img-nsJuzPMY-1566641443685)(https://cdn.nlark.com/yuque/0/2018/png/104214/1545621752061-3112c470-8406-40fc-a215-2c912a25ed10.png "")]

RLSeq2seq

[Yaser Keneshloo et.al. sCCL 18]

前面我们seq2seq的使用时 会出现 Exposure Bias训练与预测评价不一致的问题

强化学习就是来解决这个问题的一种方式

强化学习 就是 通过一些奖惩使得 向某一目标 学习 以期习得针对任意给定状态的最佳行动

在本模型的奖惩 就是 当生成完整个句子之后 通过ROUGE等评估方法得到的反馈

这样 原来因为 交叉熵计算出的Loss 与 评价体系 Rough 不一致的问题 就能够 得到解决

[外链图片转存失败(img-IgTitF9C-1566641443685)(https://cdn.nlark.com/yuque/0/2018/png/104214/1545614892194-3d023a02-8a9f-4ac7-997e-080cecb10cb0.png "")]

Reinforced Topic-ConvS2S

[Li Wang et.al. IJCAL 18]

这篇是腾讯联合哥伦比亚、苏黎世联邦理工发布的基于Topic-ConvS2S的 Text Summarization论文

实际上 你可以发现 论文 基本和前面的Topic-Convs2S 一致 只是增加了RL的内容

目测应该是同期论文 否则根本发布出去

虽然在Topic上面用的也是LDA 一样是在预处理阶段对Topic进行划分

但前面的Topic-ConvS2S是把原来的word Embedding和Topic获得的信息 直接相加

在本文 利用一个Joint Attention 再加上Bias Probability来实现与word Embedding的结合

之后 在Loss函数的地方 利用强化学习中self-critical sequence training (SCST)

使得不可微分的ROUGH指标最大化

在训练过程中 根据输入序列X生成两个输出序列

我们先贪心地选择能使得输出概率分布最大的单词作为第一序列y1

再加上从分布中采样中生成的另一个输出序列y2

于是这两个序列获得的ROUGE分数则是强化学习的Bonus

CAS

[Angela Fan et.al., ACL 18]

CAS = Controllable Abstractive Summarization

这篇论文 是之前facebook发ConvS2S 那个团队的后续 工作

字面意思 就是 可控的生成式摘要

目前的文本摘要 对于所有人 显示的摘要 一样

但其实这是很不友好的 比如说一个吴亦凡 和 黄子韬 两个人的新闻 结果你只是吴亦凡的粉丝 不想看到涛涛相关的内容

这个时候 就需要 能够控制Text Summarization长度 内容的摘取

文章从下面几个角度 对个性化进行研究

  • Length-Constrained
  • Entity-Centric
  • Source-Specific
  • Remainder

Evaluation

实际上 文本摘要 问题在模型效果判断上面 较为难处理

目前来说 Rough 效果一般 但总不能用人工评价吧

Rough是一个模型评价集合,其中

  • Rough-n 基于召回率的评估,预测结果与参考摘要之间的公共n-gram数/参考摘要内的n-gram数
  • Rough-L 基于最长公共子序列LCS 公共子序列越长 evaluation越高
  • Rough-SU 可不连续的bi-gram 和 uni-gram 相较于Rough-n 不要求gram连续

Reference

  1. Text Summarization Techniques: A Brief Survey [Mehdi Allahyari et al. Eccv 2017]
  2. Neural Abstractive Text Summarization with Sequence-to-Sequence Models [Tian Shi et al. 2018]
  3. Convolutional Sequence to Sequence Learning [Jonas Gehring et.al. ICML 17]
  4. Don’t Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization [Shashi Narayan et.al. EMNLP 18]
  5. Deep Reinforcement Learning for Sequence-to-Sequence Models [Yaser Keneshloo et.al. sCCL 18]
  6. A Reinforced Topic-Aware Convolutional Sequence-to-Sequence Model for Abstractive Text Summarization [Li Wang et.al. IJCAL 18]
  7. Controllable Abstractive Summarization [Angela Fan et.al., ACL 18]
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页