算法设计与分析: 2-3 邮局选址问题

本文探讨了2-3邮局选址问题,该问题旨在确定城市中建立邮局的最佳位置,以使所有居民点到邮局的总距离最小。通过坐标(x,y)表示居民点,距离由|x1-x2|+|y1-y2|计算。问题可转化为一维问题,利用中位数原理解决。提供了基于Java的实现方案。" 134006017,9311708,matlab实现八木天线仿真及源码解析,"['matlab', '通信仿真', '电磁场计算']
摘要由CSDN通过智能技术生成

2-3 邮局选址问题


问题描述

在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。用x 坐标表示东西向,用y坐标表示南北向。各居民点的位置可以由坐标(x,y)表示。街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值|x1-x2|+|y1-y2|度量。
居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。

编程任务:
给定n 个居民点的位置,编程计算n 个居民点到邮局的距离总和的最小值。


分析

二维邮局问题,可以转化为两个一维邮局问题,可用中位数原理,同输油管道问题


Java

import java.util.Arrays;

public class Main {
   

    public static void main(String[] args) 
邮局选址问题是指在一定范围内选取若干个邮局,使得所有居民到最近的邮局的距离之和最小。分治算法可以用于解决这个问题。 具体思路如下: 1. 将区域划分为若干个子区域,每个子区域内只有一个邮局2. 计算每个居民到最近的邮局的距离之和。 3. 选取距离之和最小的子区域,将其继续划分为子区域,直到每个子区域内只有一个居民点。 4. 在每个子区域内选取一个居民点作为邮局,计算所有居民到最近的邮局的距离之和。 5. 比较所有方案,选择距离之和最小的方案。 下面是使用C语言实现邮局选址问题分治算法的示例代码: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> #define MAX 100 // 最大居民点数 // 定义居民点结构体 struct point { double x; // x坐标 double y; // y坐标 }; // 计算两点间的距离 double distance(struct point p1, struct point p2) { return sqrt(pow(p1.x - p2.x, 2) + pow(p1.y - p2.y, 2)); } // 计算所有居民到最近的邮局的距离之和 double cost(struct point* p, int n, struct point* q, int m) { double sum = 0; for (int i = 0; i < n; i++) { double min = distance(p[i], q[0]); for (int j = 1; j < m; j++) { double d = distance(p[i], q[j]); if (d < min) { min = d; } } sum += min; } return sum; } // 分治算法求解邮局选址问题 double solve(struct point* p, int n, struct point* q, int m) { if (m == 1) { // 只有一个邮局,直接计算距离之和 return cost(p, n, q, m); } else { // 将区域划分为两个子区域,递归求解 int k = n / 2; double x = p[k].x; double sum1 = solve(p, k, q, m); double sum2 = solve(p + k, n - k, q, m); double min = sum1 + sum2; int j = 0; for (int i = 0; i < n; i++) { if (p[i].x < x) { // 属于左边子区域 double d1 = cost(p, i, q, m); double d2 = solve(p + i, n - i, q, m); double sum = d1 + d2; if (sum < min) { min = sum; } } else { // 属于右边子区域 double d1 = cost(p + i, n - i, q, m); double d2 = solve(p, i, q, m); double sum = d1 + d2; if (sum < min) { min = sum; } q[j++] = p[i]; // 将右边子区域的居民点加入右边的邮局集合中 } } return min; } } int main() { int n, m; struct point p[MAX], q[MAX]; scanf("%d%d", &n, &m); for (int i = 0; i < n; i++) { scanf("%lf%lf", &p[i].x, &p[i].y); } printf("%.2lf\n", solve(p, n, q, m)); return 0; } ``` 注意在使用分治算法求解时,每次递归都需要开辟新的邮局集合q,以避免对原有集合的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值