一个APP用户的活跃情况,和下期活跃预测的例子

一,做流失预测的用处:

•1.管理流失,提升留存/活跃率:
①精确了解客户流失情况
②分析流失和活跃客户特征
③预测可能流失客户
④制定相对应的个别或整体运营策略---尤其针对“高价值又即将流失”的宝贵用户群
⑤实施运营策略并评估实际成果
⑥重复1-5
•2.不仅仅可以预测流失,未来还可以建立模型来预测我们关注的其他事件,
•比如“哪些人最有可能看教练视频?”
•“那些人最有可能参加跑团?”等等

二,预测“多远的未来”?

为什么我们在流失预测报告中的预测窗口是2周/4周/8周?而不是把统计报告中“流失用户”的“90天未使用APP”中的90天当作预测窗口?

•我们从14/15年的数据看:对有记录的所有用户,观察他们的“两次运动间的间隔天数”的“最大值”和“3/4分位值”。(¾分位值的含义:比如,一个用户在2015年运动9次,分别在{1月1日,1月11日,1月31日,2月11日,3月11日,3月31日,4月30日,5月11日,5月31日},那么八个运动间隔分别是{10天,20天,10天,30天,20天,30天,10天,20天};那么从小到大排序为{10,10,10,20,20,20,20,30,30},那么,对于这个跑步用户而言,他的3/4分位值就是排名第六的20天。)
•14/15年的运动用户中:
•观察间隔天数的3/4分位值:81%小于2周,90%小于4周,96%小于8周内,98%小于三个月。
•观察‘最久间隔多少天运动’:62%小于2周,76%小于4周,87%的小于8周,93%小于三个月。
•由此推论:
•对于我们关心的“哪1000名运动者最有可能“辍跑”?”的问题来说,一份“接下来的2周/4周/8周会辍跑的用户列表”,是有相当的代表性的,这个列表上的名单,如果按照以前的规律、没有正面活动的话,有相当大的可能会“三个月以上不跑步”而变成流失。
•因此,“适合我们当下关注”的预测指标,是预测下一个时间周期(2周/4周/8周)用户是否会登入。

阅读更多
上一篇汽车行业的互联网营销业务目前有哪些种类
下一篇tableau初步上手
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭