(以下内容来自于 维基百科)。
在数学里, 希尔伯特空间(英语: Hilbert space)即 完备的内积空间,也就是一个带有内积的完备向量空间。希尔伯特空间是有限维 欧几里得空间的一个推广,使之不局限于实数的情形和有限的维数,但又不失完备性(而不像一般的非欧几里得空间那样破坏了完备性)。与欧几里得空间相仿,希尔伯特空间也是一个 内积空间,其上有距离和角的概念(及由此引申而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列会收敛到此空间里的一点,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。
希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公设化数学和量子力学的关键性概念之一。
常见的例子
在以下例子中,假设所有的希尔伯特空间都是复数,尽管实际应用中大多是实数。
欧几里得空间
C n \mathbb{C}^n Cn及其上的内积
⟨
x
,
y
⟩
=
∑
k
=
1
n
x
k
‾
y
k
\langle x, y \rangle = \sum_{k=1}^n \overline{x_k} y_k
⟨x,y⟩=∑k=1nxkyk
构成了一个希尔伯特空间,其中短横线表示一个复数的复共轭。
序列空间
更一般的希尔伯特空间都是无穷维的,假设{\displaystyle B}B是一个任意集合,可以定义其上的 ℓ 2 {\displaystyle \ell ^{2}} ℓ2序列空间,记为
ℓ
2
(
B
)
=
{
x
:
B
→
C
∣
∑
b
∈
B
∣
x
(
b
)
∣
2
<
∞
}
\ell^2(B) =\left\{ x:B \rightarrow \mathbb{C}\,\bigg|\,\sum_{b \in B} \left|x \left(b\right)\right|^2 < \infty \right\}
ℓ2(B)={x:B→C∣∣∣∣∑b∈B∣x(b)∣2<∞}
此空间在定义如下内积后,成为一个希尔伯特空间:
⟨
x
,
y
⟩
=
∑
b
∈
B
x
(
b
)
‾
y
(
b
)
\langle x, y \rangle = \sum_{b \in B} \overline{x(b)} y(b)
⟨x,y⟩=∑b∈Bx(b)y(b)
其中
x
和
y
{\displaystyle x}和{\displaystyle y}
x和y是
ℓ
2
(
B
)
\ell^2(B)
ℓ2(B)中的任意元素。在这个定义中,
B
{\displaystyle B}
B并非一定要是可数的,在
B
{\displaystyle B}
B不可数之情形下,
ℓ
2
(
B
)
\ell^2(B)
ℓ2(B)不是可分(separable)的。在下面更具体的例子中,所有的希尔伯特空间在选定适当的
B
{\displaystyle B}
B的情况下,都可以表示成为
ℓ
2
(
B
)
{\displaystyle \ell ^{2}(B)}
ℓ2(B)的一个同构空间。特别地,当
B
=
(
N
)
{\displaystyle B=\mathbb {(} N)}
B=(N)的时候,可以将其简单记为
ℓ
2
{\displaystyle \ell ^{2}}
ℓ2。
勒贝格空间
勒贝格空间( 这里指 L 2 ( X ) {\displaystyle L^{2}(X)} L2(X)空间 )是指定义在测度空间 ( X , M , μ ) {\displaystyle (X,{\mathcal {M}},\mu )} (X,M,μ) 上的函数空间,其中 X {\displaystyle X} X 代表函数的定义域, M {\displaystyle {\mathcal {M}}} M 的元素是 X {\displaystyle X} X上的子集族,为 一个 σ {\displaystyle \sigma } σ 代数,一般把 M {\displaystyle {\mathcal {M}}} M 称作可测空间(measurable space),而 μ \mu μ 是 M {\mathcal {M}} M 上的测度。
更仔细的说, L 2 ( X , μ ) L^2(X, \mu) L2(X,μ)( 简写做 L 2 ( X ) ) L^2(X) ) L2(X))表示 X X X 上所有平方可积(square-integrable)的复数值的可测函数的集合。平方可积表示该函数的绝对值的平方的积分是有限的。要注意的是在 L 2 ( X ) L^2(X) L2(X) 空间里,对于几乎处处( almost everywhere )相同的函数,也就是说如果两函数只在一个测度为0的集合上不相等,我们把这两函数当做在 L 2 ( X ) L^2(X) L2(X) 中相同的元素。
索伯列夫空间
索伯列夫空间一般表示为 H s H^s Hs或者 W s , 2 W^{s, 2} Ws,2是希尔伯特空间的另一个重要实例,它多被应用于偏微分方程的研究。