哈密顿算子 点乘 叉乘
1、定义与性质
哈密顿算子:(数学符号:
∇
\nabla
∇(又称nabla,奈布拉算子)),读来作Hamilton。
向量微分算子:
∇
=
∂
∂
x
i
⃗
+
∂
∂
y
j
⃗
+
∂
∂
z
k
⃗
\nabla=\frac{\partial }{\partial x}\vec{i}+\frac{\partial}{\partial y} \vec{j}+\frac{\partial }{\partial z}\vec{k}
∇=∂x∂i+∂y∂j+∂z∂k
性质:
- 矢量性
- 微分算子
- 只对算子 ∇ \nabla ∇右边的量发生微分作用
麦克斯韦方程的微分形式:
∂
D
x
∂
x
+
∂
D
y
∂
y
+
∂
D
z
∂
z
=
ρ
\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}=\rho
∂x∂Dx+∂y∂Dy+∂z∂Dz=ρ
∂
B
x
∂
x
+
∂
B
y
∂
y
+
∂
B
z
∂
z
=
0
\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}=0
∂x∂Bx+∂y∂By+∂z∂Bz=0
∂
H
z
∂
y
−
∂
H
y
∂
z
=
δ
x
+
∂
D
x
∂
t
\frac{\partial H_{z}}{\partial y} -\frac{\partial H_y}{\partial z} = \delta_{x}+\frac{\partial D_{x}}{\partial t}
∂y∂Hz−∂z∂Hy=δx+∂t∂Dx
∂
H
x
∂
z
−
∂
H
z
∂
x
=
δ
y
+
∂
D
y
∂
t
\frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}=\delta_{y}+\frac{\partial D_{y}}{\partial t}
∂z∂Hx−∂x∂Hz=δy+∂t∂Dy
∂
H
y
∂
x
−
∂
H
x
∂
y
=
δ
z
+
∂
D
z
∂
t
\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}=\delta_{z}+\frac{\partial D_{z}}{\partial t}
∂x∂Hy−∂y∂Hx=δz+∂t∂Dz
∂
E
z
∂
y
−
∂
E
y
∂
z
=
−
∂
B
x
∂
t
\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}=-\frac{\partial B_{x}}{\partial t}
∂y∂Ez−∂z∂Ey=−∂t∂Bx
∂ E x ∂ z − ∂ E z ∂ x = − ∂ B y ∂ t \frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}=-\frac{\partial B_{y}}{\partial t} ∂z∂Ex−∂x∂Ez=−∂t∂By
∂ E y ∂ x − ∂ E x ∂ y = − ∂ B z ∂ t \frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=-\frac{\partial B_{z}}{\partial t} ∂x∂Ey−∂y∂Ex=−∂t∂Bz
引进哈密顿算子,上式简化为:
{
∇
⋅
D
⃗
=
ρ
∇
⋅
B
⃗
=
0
∇
×
H
⃗
=
δ
⃗
+
∂
D
⃗
∂
t
∇
×
E
⃗
=
−
∂
B
⃗
∂
t
\begin{cases} \nabla \cdot \vec{D}=\rho \\ \nabla \cdot \vec{B}=0 \\ \nabla \times \vec{H}=\vec{\delta}+\frac{\partial \vec{D}}{\partial t} \\ \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \end{cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧∇⋅D=ρ∇⋅B=0∇×H=δ+∂t∂D∇×E=−∂t∂B
2、标量场的梯度
笛卡尔坐标系下的梯度:
∇
P
=
∂
P
∂
x
i
⃗
+
∂
P
∂
y
j
⃗
+
∂
P
∂
z
k
⃗
=
g
r
a
d
P
\nabla{P}=\frac{\partial P}{\partial x} \vec{i}+\frac{\partial P}{\partial y} \vec{j}+\frac{\partial P}{\partial z} \vec{k}=gradP
∇P=∂x∂Pi+∂y∂Pj+∂z∂Pk=gradP
(结果为矢量)
3、矢量场的散度
∇
∙
V
⃗
=
∂
V
x
∂
x
+
∂
V
y
∂
y
+
∂
V
z
∂
z
=
d
i
v
V
⃗
\nabla \bullet \vec{V}=\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z}=div \vec{V}
∇∙V=∂x∂Vx+∂y∂Vy+∂z∂Vz=divV
(结果为标量)
4、矢量场的旋度
笛卡尔坐标系下旋度定义:
∇
×
V
⃗
=
∣
i
⃗
j
⃗
k
⃗
∂
∂
x
∂
∂
y
∂
∂
z
V
x
V
y
V
z
∣
=
(
∂
V
z
∂
y
−
∂
V
y
∂
z
)
i
⃗
+
(
∂
V
x
∂
z
−
∂
V
z
∂
x
)
j
⃗
+
(
∂
V
y
∂
x
−
∂
V
x
∂
y
)
k
⃗
=
r
o
t
V
⃗
\nabla \times \vec{V}=\left|\begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ V_{x} & V_{y} & V_{z} \end{array}\right| = \left(\frac{\partial V_z}{\partial y} -\frac{\partial V_{y}}{\partial z}\right) \vec{i}+\left(\frac{\partial V_{x}}{\partial z}-\frac{\partial V_{z}}{\partial x}\right) \vec{j}+\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right) \vec{k} = rot \vec{V}
∇×V=∣∣∣∣∣∣i∂x∂Vxj∂y∂Vyk∂z∂Vz∣∣∣∣∣∣=(∂y∂Vz−∂z∂Vy)i+(∂z∂Vx−∂x∂Vz)j+(∂x∂Vy−∂y∂Vx)k=rotV
(结果为矢量)
5、哈密顿算子重要运算性质
∇
⋅
(
A
⃗
×
B
⃗
)
=
B
⃗
⋅
∇
×
A
⃗
−
A
⃗
⋅
∇
×
B
⃗
\nabla \cdot(\vec{A} \times \vec{B})=\vec{B} \cdot \nabla \times \vec{A}-\vec{A} \cdot \nabla \times \vec{B}
∇⋅(A×B)=B⋅∇×A−A⋅∇×B
证明
6、向量内积与外积的性质与几何意义
向量内积的性质:
- a^2 ≥ 0;当a^2 = 0时,必有a = 0. (正定性)
- a·b = b·a. (对称性)
- (λa + μb)·c = λa·c + μb·c,对任意实数λ, μ成立. (线性)
- cos∠(a,b) =a·b/(|a||b|).
- |a·b| ≤ |a||b|,等号只在a与b共线时成立.
内积(点乘)的几何意义包括:
- 表征或计算两个向量之间的夹角
- b向量在a向量方向上的投影
向量外积的性质
- a × b = -b × a. (反称性)
- (λa + μb) × c = λ(a ×c) + μ(b ×c). (线性)
向量外积的几何意义
在三维几何中,向量a和向量b的外积结果是一个向量,有个更通俗易懂的叫法是法向量,该向量垂直于a和b向量构成的平面。
在3D图像学中,外积的概念非常有用,可以通过两个向量的外积,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示:

