哈密顿算子与梯度、散度、旋度

哈密顿算子 点乘 叉乘

1、定义与性质

哈密顿算子:(数学符号: ∇ \nabla (又称nabla,奈布拉算子)),读来作Hamilton。
向量微分算子 ∇ = ∂ ∂ x i ⃗ + ∂ ∂ y j ⃗ + ∂ ∂ z k ⃗ \nabla=\frac{\partial }{\partial x}\vec{i}+\frac{\partial}{\partial y} \vec{j}+\frac{\partial }{\partial z}\vec{k} =xi +yj +zk

性质

  • 矢量性
  • 微分算子
  • 只对算子 ∇ \nabla 右边的量发生微分作用

麦克斯韦方程的微分形式
∂ D x ∂ x + ∂ D y ∂ y + ∂ D z ∂ z = ρ \frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}=\rho xDx+yDy+zDz=ρ ∂ B x ∂ x + ∂ B y ∂ y + ∂ B z ∂ z = 0 \frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}=0 xBx+yBy+zBz=0
∂ H z ∂ y − ∂ H y ∂ z = δ x + ∂ D x ∂ t \frac{\partial H_{z}}{\partial y} -\frac{\partial H_y}{\partial z} = \delta_{x}+\frac{\partial D_{x}}{\partial t} yHzzHy=δx+tDx ∂ H x ∂ z − ∂ H z ∂ x = δ y + ∂ D y ∂ t \frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}=\delta_{y}+\frac{\partial D_{y}}{\partial t} zHxxHz=δy+tDy ∂ H y ∂ x − ∂ H x ∂ y = δ z + ∂ D z ∂ t \frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}=\delta_{z}+\frac{\partial D_{z}}{\partial t} xHyyHx=δz+tDz
∂ E z ∂ y − ∂ E y ∂ z = − ∂ B x ∂ t \frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}=-\frac{\partial B_{x}}{\partial t} yEzzEy=tBx

∂ E x ∂ z − ∂ E z ∂ x = − ∂ B y ∂ t \frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}=-\frac{\partial B_{y}}{\partial t} zExxEz=tBy

∂ E y ∂ x − ∂ E x ∂ y = − ∂ B z ∂ t \frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=-\frac{\partial B_{z}}{\partial t} xEyyEx=tBz

引进哈密顿算子,上式简化为:
{ ∇ ⋅ D ⃗ = ρ ∇ ⋅ B ⃗ = 0 ∇ × H ⃗ = δ ⃗ + ∂ D ⃗ ∂ t ∇ × E ⃗ = − ∂ B ⃗ ∂ t \begin{cases} \nabla \cdot \vec{D}=\rho \\ \nabla \cdot \vec{B}=0 \\ \nabla \times \vec{H}=\vec{\delta}+\frac{\partial \vec{D}}{\partial t} \\ \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \end{cases} D =ρB =0×H =δ +tD ×E =tB

2、标量场的梯度

笛卡尔坐标系下的梯度:
∇ P = ∂ P ∂ x i ⃗ + ∂ P ∂ y j ⃗ + ∂ P ∂ z k ⃗ = g r a d P \nabla{P}=\frac{\partial P}{\partial x} \vec{i}+\frac{\partial P}{\partial y} \vec{j}+\frac{\partial P}{\partial z} \vec{k}=gradP P=xPi +yPj +zPk =gradP

(结果为矢量)

3、矢量场的散度

∇ ∙ V ⃗ = ∂ V x ∂ x + ∂ V y ∂ y + ∂ V z ∂ z = d i v V ⃗ \nabla \bullet \vec{V}=\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z}=div \vec{V} V =xVx+yVy+zVz=divV
(结果为标量)

4、矢量场的旋度

笛卡尔坐标系下旋度定义:
∇ × V ⃗ = ∣ i ⃗ j ⃗ k ⃗ ∂ ∂ x ∂ ∂ y ∂ ∂ z V x V y V z ∣ = ( ∂ V z ∂ y − ∂ V y ∂ z ) i ⃗ + ( ∂ V x ∂ z − ∂ V z ∂ x ) j ⃗ + ( ∂ V y ∂ x − ∂ V x ∂ y ) k ⃗ = r o t V ⃗ \nabla \times \vec{V}=\left|\begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ V_{x} & V_{y} & V_{z} \end{array}\right| = \left(\frac{\partial V_z}{\partial y} -\frac{\partial V_{y}}{\partial z}\right) \vec{i}+\left(\frac{\partial V_{x}}{\partial z}-\frac{\partial V_{z}}{\partial x}\right) \vec{j}+\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right) \vec{k} = rot \vec{V} ×V =i xVxj yVyk zVz=(yVzzVy)i +(zVxxVz)j +(xVyyVx)k =rotV
(结果为矢量)

5、哈密顿算子重要运算性质

∇ ⋅ ( A ⃗ × B ⃗ ) = B ⃗ ⋅ ∇ × A ⃗ − A ⃗ ⋅ ∇ × B ⃗ \nabla \cdot(\vec{A} \times \vec{B})=\vec{B} \cdot \nabla \times \vec{A}-\vec{A} \cdot \nabla \times \vec{B} (A ×B )=B ×A A ×B
证明

6、向量内积与外积的性质与几何意义

向量内积的性质:

  • a^2 ≥ 0;当a^2 = 0时,必有a = 0. (正定性)
  • a·b = b·a. (对称性)
  • a + μbc = λa·c + μb·c,对任意实数λ, μ成立. (线性)
  • cos∠(a,b) =a·b/(|a||b|).
  • |a·b| ≤ |a||b|,等号只在ab共线时成立.

内积(点乘)的几何意义包括:

  • 表征或计算两个向量之间的夹角
  • b向量在a向量方向上的投影

向量外积的性质

  • a × b = -b × a. (反称性)
  • a + μb) × c = λ(a ×c) + μ(b ×c). (线性)

向量外积的几何意义
在三维几何中,向量a和向量b的外积结果是一个向量,有个更通俗易懂的叫法是法向量,该向量垂直于a和b向量构成的平面。

在3D图像学中,外积的概念非常有用,可以通过两个向量的外积,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示:

在二维空间中,外积还有另外一个几何意义就是:|a×b|在数值上等于由向量a和向量b构成的平行四边形的面积。

7、矢量分析中常用恒等式

参考
在这里插入图片描述

  • 57
    点赞
  • 234
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

irober

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值