题目
给出 n 个点的一棵树,多次询问两点之间的最短距离。
注意:
边是无向的。
所有节点的编号是 1,2,…,n。
输入格式
第一行为两个整数 n 和 m。n 表示点数,m 表示询问次数;
下来 n−1 行,每行三个整数 x,y,k,表示点 x 和点 y 之间存在一条边长度为 k;
再接下来 m 行,每行两个整数 x,y,表示询问点 x 到点 y 的最短距离。
树中结点编号从 1 到 n。
输出格式
共 m 行,对于每次询问,输出一行询问结果。
数据范围
2≤n≤104,
1≤m≤2×104,
0<k≤100,
1≤x,y≤n
输入样例1:
2 2
1 2 100
1 2
2 1
输出样例1:
100
100
输入样例2:
3 2
1 2 10
3 1 15
1 2
3 2
输出样例2:
10
25
思路
核心操作:
询问两个点的最近公共祖先
离线求LCA
代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
typedef pair<int, int> PII;
const int N = 10010, M = N * 2;
int n, m;
int h[N], e[M], w[M], ne[M], idx;
int dist[N];
int p[N];
int res[M * 2];
int st[N];
vector<PII> query[N]; // first存查询的另外一个点,second存查询编号
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
void dfs(int u, int fa)
{
for (int i = h[u]; ~i; i = ne[i])
{
int j = e[i];
if (j == fa) continue;
dist[j] = dist[u] + w[i];
dfs(j, u);
}
}
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
void tarjan(int u)
{
st[u] = 1;
for (int i = h[u]; ~i; i = ne[i])
{
int j = e[i];
if (!st[j])
{
tarjan(j);
p[j] = u;
}
}
for (auto item : query[u])
{
int y = item.first, id = item.second;
if (st[y] == 2)
{
int anc = find(y);
res[id] = dist[u] + dist[y] - dist[anc] * 2;
}
}
st[u] = 2;
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
for (int i = 0; i < n - 1; i ++ )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c), add(b, a, c);
}
for (int i = 0; i < m; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
if (a != b)
{
query[a].push_back({b, i});
query[b].push_back({a, i});
}
}
for (int i = 1; i <= n; i ++ ) p[i] = i;
dfs(1, -1);
tarjan(1);
for (int i = 0; i < m; i ++ ) printf("%d\n", res[i]);
return 0;
}
```