疑难杂题——距离(LCA)

题目

给出 n 个点的一棵树,多次询问两点之间的最短距离。

注意:

边是无向的。
所有节点的编号是 1,2,…,n。
输入格式
第一行为两个整数 n 和 m。n 表示点数,m 表示询问次数;

下来 n−1 行,每行三个整数 x,y,k,表示点 x 和点 y 之间存在一条边长度为 k;

再接下来 m 行,每行两个整数 x,y,表示询问点 x 到点 y 的最短距离。

树中结点编号从 1 到 n。

输出格式

共 m 行,对于每次询问,输出一行询问结果。

数据范围

2≤n≤104,
1≤m≤2×104,
0<k≤100,
1≤x,y≤n

输入样例1:

2 2
1 2 100
1 2
2 1

输出样例1:

100
100

输入样例2:

3 2
1 2 10
3 1 15
1 2
3 2

输出样例2:

10
25

思路

在这里插入图片描述

核心操作:
询问两个点的最近公共祖先

在这里插入图片描述

离线求LCA

代码

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

typedef pair<int, int> PII;

const int N = 10010, M = N * 2;

int n, m;
int h[N], e[M], w[M], ne[M], idx;
int dist[N];
int p[N];
int res[M * 2];
int st[N];
vector<PII> query[N];   // first存查询的另外一个点,second存查询编号

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

void dfs(int u, int fa)
{
    for (int i = h[u]; ~i; i = ne[i])
    {
        int j = e[i];
        if (j == fa) continue;
        dist[j] = dist[u] + w[i];
        dfs(j, u);
    }
}

int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

void tarjan(int u)
{
    st[u] = 1;
    for (int i = h[u]; ~i; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            tarjan(j);
            p[j] = u;
        }
    }

    for (auto item : query[u])
    {
        int y = item.first, id = item.second;
        if (st[y] == 2)
        {
            int anc = find(y);
            res[id] = dist[u] + dist[y] - dist[anc] * 2;
        }
    }

    st[u] = 2;
}

int main()
{
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);
    for (int i = 0; i < n - 1; i ++ )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c), add(b, a, c);
    }

    for (int i = 0; i < m; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        if (a != b)
        {
            query[a].push_back({b, i});
            query[b].push_back({a, i});
        }
    }

    for (int i = 1; i <= n; i ++ ) p[i] = i;

    dfs(1, -1);
    tarjan(1);

    for (int i = 0; i < m; i ++ ) printf("%d\n", res[i]);

    return 0;
}
```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值