Dis
c++代码
给出 nn 个点的一棵树,每个点有各自的点权,多次询问两个点简单路径所构成点集的异或和。
输入格式
第一行两个数字 nn 和 mm , nn 表示点数,mm 表示询问次数 。
接下来一行 nn 个整数 a1,a2,…,ana1,a2,…,an ,表示每个点的点权。
接下来 n−1n−1 行 , 每行两个整数 u,vu,v ,表示点 uu 和点 vv 之间存在一条边。
再接下来 mm 行,每行两个整数 u,vu,v ,表示询问点 uu 到点 vv 的简单路径所构成点集的异或和。
输出格式
输出 mm 行,对于每个询问,输出一行。
样例输入
7 3
0 1 2 3 4 5 6
1 2
1 3
2 4
2 5
3 6
3 7
4 6
4 7
5 6
样例输出
5
6
2
数据规模
所有数据保证 1≤n,m≤200000,1≤ai≤1061≤n,m≤200000,1≤ai≤106。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+5;
const int SP = 30;
vector<int> edge[maxn];
int w[maxn], dep[maxn], pa[maxn][SP+5], ans[maxn];
void dfs(int u, int fa)
{
ans[u] = ans[fa] ^ w[u];
pa[u][0] = fa;
dep[u] = dep[fa] + 1;
for(int i=1;i<SP;i++) pa[u][i] = pa[pa[u][i - 1]][i - 1];
int v;
for (auto &v:edge[u])
{
if (v == fa) continue;
dfs(v, u);
}
}
int lca(int u, int v)
{
if (dep[u] < dep[v]) swap(u, v);
int t = dep[u] - dep[v];
for(int i=0;i<SP;i++) if (t & (1 << i)) u = pa[u][i];
for (int i=SP - 1;i>-1;i--)
{
int uu = pa[u][i], vv = pa[v][i];
if (uu != vv)
{
u = uu;
v = vv;
}
}
return u == v ? u : pa[u][0];
}
int main()
{
int n, q;
scanf("%d%d",&n,&q);
//cin >> n >> q;
for(int i = 1; i <= n; ++i) scanf("%d",&w[i]);
for(int i = 0; i < n-1; ++i)
{
int u, v;
scanf("%d%d",&u,&v);
edge[u].push_back(v);
edge[v].push_back(u);
}
dfs(1, 0);
while(q--)
{
int u, v;
scanf("%d%d",&u,&v);
printf("%d\n",(ans[u]^ans[v]^w[lca(u,v)]));
}
}