python语法

在PyTorch中,不是所有操作都需要构建计算图。默认情况下,tensor的操作会创建计算图以支持梯度反向传播。withtorch.no_grad()上下文管理器用于阻止计算图的构建,节省内存和计算资源。这对于非训练过程或不需要梯度的场合非常有用。
摘要由CSDN通过智能技术生成

1.关于with torch.no_grad():
在使用pytorch时,并不是所有的操作都需要进行计算图的生成(计算过程的构建,以便梯度反向传播等操作)。而对于tensor的计算操作,默认是要进行计算图的构建的,在这种情况下,可以使用 with torch.no_grad():,强制之后的内容不进行计算图构建。
————————————————
版权声明:本文为CSDN博主「这是一只小菜鸡」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_44134757/article/details/105775027

https://www.bmabk.com/index.php/post/12513.html 切分数据集并保留数据集的class和target属性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值