vit论文精读读后感

vision transformer打破了CV和NLP领域的鸿沟,通过将一张图片切成小块后按序输入给模型(将一个像素点在三个通道的特征打平,变成一个像素点对应768个维度的特征),将CV问题转变成NLP问题,采用了bert的只用一个编码器的结构,结果证明了是可行的,并且在大数据集预训练后分类效果比之前最好的CNN效果还要好,并且训练速度更快。但是vit在较小规模的数据集效果不行,因为vit缺少了cnn的很多归纳偏置,需要较大的数据集去重新学习很多cnn一开始就灌输的经验如局部性和平移不变性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值