题意:所谓二叉搜索树的“镜像”,即将所有结点的左右子树对换位置后所得到的树。
给定一个整数键值序列,现请你编写程序,判断这是否是对一棵二叉搜索树或其镜像进行前序遍历的结果。
如果输入序列是对一棵二叉搜索树或其镜像进行前序遍历的结果,则首先在一行中输出 YES
,然后在下一行输出该树后序遍历的结果。数字间有 1 个空格,一行的首尾不得有多余空格。若答案是否,则输出 NO
。
tips:
1、镜像二叉树的先序遍历就是树先序遍历的过程中 根->右孩子->左孩子
2、可以把遍历结果存在vector中,直接两个vector比较,另外用引用的形式传参减少了vector不必要的复制
3、在插入的时候要根据题意来进行,比如说,相同元素应该往右子树上插而不是左子树
#include<cstdio>
#include<vector>
using namespace std;
struct node
{
int data;
node *lch;
node *rch;
};
void insert(node* &root,int x)
{
if(root==NULL)
{
root=new node;
root->data=x;
root->lch=NULL;
root->rch=NULL;
return ;
}
// if(root->data<x) insert(root->rch,x);
// else insert(root->lch,x); 这种写法是错的 x小于等于根数据往左子树上插 导致8的位置和题意不符
if(x<root->data) insert(root->lch,x);
else insert(root->rch,x); //这种写法是对的 x大于等于根数据往右子树上插
}
void preorder(node* root,vector<int>&vi)
{
if(root==NULL) return ;
vi.push_back(root->data);
preorder(root->lch,vi);
preorder(root->rch,vi);
}
void preordermirror(node *root,vector<int>&vi) //交换左右节点在输出的时候相当于先输出右孩子再输出左孩子 也可以建两棵树
{
if(root==NULL) return ;
vi.push_back(root->data);
preordermirror(root->rch,vi);
preordermirror(root->lch,vi);
}
void postorder(node *root,vector<int>&vi)
{
if(root==NULL) return ;
postorder(root->lch,vi);
postorder(root->rch,vi);
vi.push_back(root->data);
}
void postordermirror(node *root,vector<int>&vi)
{
if(root==NULL) return ;
postordermirror(root->rch,vi);
postordermirror(root->lch,vi); //注意这里方向相反
vi.push_back(root->data);
}
vector<int> origin,pre,preM,post,postM;
int main()
{
int n;
scanf("%d",&n);
node* root=NULL;
for(int i=0;i<n;++i)
{
int x;
scanf("%d",&x);
origin.push_back(x);
insert(root,x);
}
preorder(root,pre); //这种思路就比较巧妙
preordermirror(root,preM);
postorder(root,post);
postordermirror(root,postM);
// for(int i=0;i<pre.size();++i)
// {
// if(!i) printf("%d",pre[i]);
// else printf(" %d",pre[i]);
// }
// printf("\n");
// for(int i=0;i<preM.size();++i)
// {
// if(!i) printf("%d",preM[i]);
// else printf(" %d",preM[i]);
// }
if(origin==pre) //vector可以直接比较
{
printf("YES\n");
for(int i=0;i<post.size();++i)
{
if(!i) printf("%d",post[i]);
else printf(" %d",post[i]);
}
}
else if(origin==preM)
{
printf("YES\n");
for(int i=0;i<postM.size();++i)
{
if(!i) printf("%d",postM[i]);
else printf(" %d",postM[i]);
}
}
else printf("NO\n");
return 0;
}