TensorRT
文章平均质量分 87
清欢守护者
人间有味是清欢
展开
-
Deepstream 资料阅读记录
文章目录0. 前言1 DeepStream: Next-Generation Video Analytics for Smart Cities2 DeepStream SDK3. DeepStream Getting Started4. NVIDIA DeepStream SDK Developer Guide0. 前言官方文档DeepStream: Next-Generation Video Analytics for Smart Cities,对应翻译DeepStream Getting S原创 2021-07-02 13:55:14 · 553 阅读 · 0 评论 -
tkDNN 使用与源码浏览
文章目录0. 前言1. 使用2. 源码浏览2.1 文件夹结构2.2 项目总体结构0. 前言参考资料:GithubtkDNN代码的使用和理解tkDNN 是什么简单说,就是利用 cuDNN 和 TensorRT 实现了一些网络,目标部署在 Jetson 设备上。官方介绍如下文所示tkDNN is a Deep Neural Network library built with cuDNN and tensorRT primitives, specifically thoug原创 2021-05-08 18:18:56 · 1047 阅读 · 0 评论 -
TensorRT 入门(7) INT8 量化
文章目录0. 前言1. sampleINT81.1 实例简介1.2 扩展阅读2. sampleINT8API2.1 实例简介2.2 扩展阅读3. Python Caffe MNIST INT80. 前言TensorRT 提供了 FP16 量化与 INT8 量化。前者通过 FP32 engine 或 ONNX 模型就可以直接得到。后者多了一步操作,需要进行校准(calibration),生成校准文件。官方提供了两个samplesampleINT8 - Performing Inferen原创 2021-05-06 18:50:44 · 4796 阅读 · 5 评论 -
深入理解 TensorRT (2) 卷积层详解
文章目录0. 前言1. 问题描述2. 一些测试2.1 测试代码总体结构2.2 一些测试结果3. 未完成的工作0. 前言现状之前学习了 tensorrtx lenet,该项目通过 TensorRT Network Definition C++ API 创建模型,当时没觉得这个有什么好,就当是熟悉 TensorRT。现在碰到一个问题,ONNX模型转不过去,可能要用到TensorRT API构建Network。开始找资料时发现:文档写的很简单,也没有实例;中英文博客也很少,也没有太多实例;基本上都原创 2021-04-16 11:18:55 · 1372 阅读 · 0 评论 -
深入理解 TensorRT (1) TensorRT Python API 详解
文章目录0. 前言1. 基本概念1.1 Logger1.2 Builder1.3. Runtime1.4 ICudaEngine1.5 IExecutionContext2. 推理2.1 相关API详解2.2 实例3. ONNX 模型转换4. Dynamic Shape5. 插件0. 前言之前浏览过Python API并输出了笔记,但在实际使用过程中,上次的笔记没有任何卵用……所以,本文根据 API 提供的几个功能,分别介绍相关API以及实例,希望下次用到TensorRT的时候,可以直接在这里原创 2021-04-02 17:14:07 · 9797 阅读 · 8 评论 -
TensorRT 入门(6) tensorrtx lenet
文章目录0. 前言1. 使用流程2. 源码解析2.1. 创建Engine文件2.2. 模型推理0. 前言学习TensorRT的资料实在是太少了主要就是靠官方文档和官方Demo其他开源项目基本都是针对某个或某些网络的,没有一些类似于tutorials的教程除了官方资料外,Github上star最多的就是 tensorrtx这个项目可能开始是作者练手的,后面慢慢丰富了之后有别人来提交PR这个项目的主要内容是:通过 TensorRT Network API 来构建网络,并转换原始模型的原创 2021-02-26 11:47:03 · 2350 阅读 · 0 评论 -
TensorRT 入门(5) TensorRT官方文档浏览
文章目录0. 前言1. Quick Start Guide 详解1.1. TensorRT 生态1.2. ONNX 样例1.3. TensorRT Runtime API2. Developer Guide 详解2.1. TensorRT 简介2.2. C++/Python API3. Best Practices For TensorRT Performance 详解3.1. 如何评估性能3.2. 如何提高TensorRT性能3.3. 如何提高 Layer/Plugin/Python 的性能0. 前言原创 2021-02-24 13:37:02 · 3354 阅读 · 8 评论 -
TensorRT 入门(4) Python API 浏览
文章目录0. 前言1. User Guide1.1. Core Concepts2. TensorRT API Reference3. UFF Converter API Reference4. GraphSurgeon API Reference0. 前言官方文档地址内容简介:User Guide:用户手册,主要包括安装、迁移以及一些基本概念TensorRT API ReferenceUFF Converter API ReferenceGraphSurgeon API Refer原创 2021-02-23 16:07:35 · 467 阅读 · 0 评论 -
TensorRT 入门(3) 官方样例 sampleOnnxMNIST
文章目录0. 前言1. ONNX 模型转换1.1. build 函数详解0. 前言本文提到的sampleMNISTAPI与之前0. 前言本文提到的sampleMNISTAPI与之前笔记1和笔记2提到的样例有完全相同的输入与输出,不同之处在于模型创建方式不一样。sampleMNIST通过导入一个caffe模型并将caffe模型转换为tensorrt的形式。sampleMNISTAPI通过TensorRT的C++接口直接一层一层搭建模型,并将caffe中的权重导入创建好的网络中。sample原创 2021-02-05 18:29:17 · 1154 阅读 · 1 评论 -
TensorRT 入门(1) 安装以及第一个样例sampleMNIST
文章目录0. 前言1. 运行过程1.1. 数据准备1.2. 代码编译与运行2. 源码解析2.1. 基本概念2.2. 主函数2.3. 将caffe模型转换为TensorRT可识别的形式2.4. 模型推理0. 前言目标:在根据官方文档安装完后尝试测试一下TensorRT是否安装成功。代码可以在 samples/sampleMNIST 中找到,也可以看 github 中对应路径。TODO:进一步理解模型推理过程中的 stream/buffer/context 等变量的含义。1. 运行过程以下过原创 2020-07-06 19:11:10 · 3910 阅读 · 2 评论 -
TensorRT 入门(2) 官方样例 sampleMNISTAPI
文章目录0. 前言1. TensoRT C++ 构建网络1.1. 对象定义1.2. 建立网络2. 其他相关代码2.1. 读取命令行参数2.2. logger 相关0. 前言本文提到的sampleMNISTAPI与之前笔记提到的sampleMNIST有完全相同的输入与输出,不同之处在于模型创建方式不一样。sampleMNIST通过导入一个caffe模型并将caffe模型转换为tensorrt的形式。sampleMNISTAPI通过TensorRT的C++接口直接一层一层搭建模型,并将caffe中的原创 2021-02-05 17:16:57 · 832 阅读 · 0 评论