代码随想录|day29|回溯算法part05* 491.递增子序列* 46.全排列* 47.全排列 II

 

491.递增子序列

链接:代码随想录

视频链接:https://www.bilibili.com/video/BV1EG4y1h78v

 

 错误回答:

class Solution {
public:
    // 数组中可能含有重复元素,
    //如出现两个整数相等,也可以视作递增序列的一种特殊情况
    //子序列:不需要连续
    //回溯的条件里加上要比上一层传过来的元素大
    //不需要排序
    //为了避免出现[4,7(第一个7)],[4,7(第二个7)]7这个数字只用第一个
    vector<vector<int>>v;
    vector<int>mv;
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        backtracing(nums,0);
        return v;

    }
    void backtracing(vector<int> &nums,int startIndex)
    {
        if(mv.size()>=2)
        {
          v.push_back(mv);
        }
        for(int j=startIndex;j<nums.size();j++)
        {
            if(j>startIndex &&nums[j]==nums[j-1])
            {
                continue;
            }
            if(nums[j]>=nums[startIndex])//保证递增
            {
                mv.push_back(nums[j]);
                backtracing(nums,j+1);
                mv.pop_back();

            }
        }

    }
};

猜想:

这部分只能横向的约束递归树,无法纵向的约束。

修改条件,希望本层回溯节点必须比上层回溯节点值大

void backtracing(vector<int> &nums,int startIndex)
    {
        if(mv.size()>=2)
        {
          v.push_back(mv);
        }
        for(int j=startIndex;j<nums.size();j++)
        {
            if(j>startIndex &&nums[j]==nums[j-1])
            {
                continue;
            }
            if(startIndex>=1 && nums[j]>=nums[startIndex-1])//保证递增
            {
                mv.push_back(nums[j]);
                backtracing(nums,j+1);
                mv.pop_back();
            }
            if(startIndex==0)
            {
                mv.push_back(nums[j]);
                backtracing(nums,j+1);
                mv.pop_back();
            }
        }

    }

仍然不对,继续修改。pre=-101//记录上层回溯节点的值,本层回溯节点必须比上层回溯节点值大 

class Solution {
public:
    // 数组中可能含有重复元素,
    //如出现两个整数相等,也可以视作递增序列的一种特殊情况
    //子序列:不需要连续
    //回溯的条件里加上要比上一层传过来的元素大
    //不需要排序
    //为了避免出现[4,7(第一个7)],[4,7(第二个7)]7这个数字只用第一个
    vector<vector<int>>v;
    vector<int>mv;
    int pre=-101;//记录上层回溯节点的值,本层回溯节点必须比上层回溯节点值大 
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        backtracing(nums,0,pre);
        return v;

    }
    void backtracing(vector<int> &nums,int startIndex,int pre)
    {
        if(mv.size()>=2)
        {
          v.push_back(mv);
        }
        for(int j=startIndex;j<nums.size();j++)
        {
            if(j>startIndex &&nums[j]==nums[j-1])
            {
                continue;
            }
            if(nums[j]>=pre)//保证递增
            {
                mv.push_back(nums[j]);
                int temp=pre;
                pre=nums[j];
                backtracing(nums,j+1,pre);
                pre=temp;
                mv.pop_back();
            }
            
        }

    }
};

 结果仍然不对。

去看了视频,发现我自己的横向去重部分的代码,还是建立在数组排序之上的,而这里给出的原数组根本没有排序,也就是说用

根本行不通。

老师这里用的是每一节点扩展的横向选择都重新建立一个unordered_set,从而对横向的进行去重。竖向的数枝和我想像的一样,不用去重。

另外,记录上一层的结果也不用像我一样单独加一个pre参数,而是使用了已经记录树枝路径的最后一个元素,也就是mv.back()去比较记录。用本层的nums[j]和mv.back ()进行比较。

 

 结果:

class Solution {
public:
    vector<vector<int>>v;
    vector<int>mv;
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        backtracing(nums,0);
        return v;

    }
    void backtracing(vector<int> &nums,int startIndex)
    {
        if(mv.size()>=2)
        {
            v.push_back(mv);
        }
        //对于每一个要横向扩展的节点,新建unoredered_set去重
        unordered_set<int>uset;
        for(int j=startIndex;j<nums.size();j++)
        {
            if(uset.find(nums[j])!=uset.end())//如果是重复的元素,跳过
            {
                continue;
            }
            
            if(!mv.empty()&& nums[j]<mv.back())//要加入的元素小于已有元素的最后一个元素,则不加
            {
                continue;
            }
            uset.insert(nums[j]);
            mv.push_back(nums[j]);
            backtracing(nums,j+1);
            mv.pop_back();
            
        }
    }
};

46.全排列

本题重点感受一下,排列问题 与 组合问题,组合总和,子集问题的区别。 为什么排列问题不用 startIndex

链接:代码随想录

 终于轮到了排列!!

排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次

class Solution {
public:
// 背模板还是好背的
vector<vector<int>>v;
vector<int>mv;
vector<bool>used;
    vector<vector<int>> permute(vector<int>& nums) {
        used.resize(nums.size(),false);
        backtracing(nums);
        /*
        for(auto p:used)
        {
            cout<<p<<" ";
        }
        cout<<endl;*/
        return v;


    }
    void backtracing(vector<int> &nums)
    {
        if(mv.size()==nums.size())
        {
            v.push_back(mv);
        }

        for(int j=0;j<nums.size();j++)
        {
            
            if(!used[j])
            {
                used[j]=true;
                mv.push_back(nums[j]);
                backtracing(nums);
                mv.pop_back();
                used[j]=false;

            }
            
        }
    }
};

 

47.全排列 II

链接:代码随想录

本题 就是我们讲过的 40.组合总和II 去重逻辑 和 46.全排列 的结合,可以先自己做一下,然后重点看一下 文章中 我讲的拓展内容。 used[i - 1] == true 也行,used[i - 1] == false 也行

 

//关键词:可包含重复数字的序列 nums的排列问题

//排列:一定用到used数组。而且每一层都从0开始遍历,遍历used数组中未标记的

//可重,要先排序,对于横向展开的选择再去重,和组合思路一样

注:错误代码

分析:不知道为什么错,难道是used数组不应该设置成全局的?

class Solution {
public:
//关键词:可包含重复数字的序列 nums的排列问题
//排列:一定用到used数组。而且每一层都从0开始遍历,遍历used数组中未标记的
//可重,要先排序,对于横向展开的选择再去重,和组合思路一样
vector<vector<int>>v;
vector<int>mv;
vector<bool>used;
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        used.resize(nums.size(),false);
        sort(nums.begin(),nums.end());
        backtracing(nums);
        return v;

    }
    void backtracing(vector<int> &nums)
    {
        if(mv.size()==nums.size())
        {
            v.push_back(mv);
            
        }
        for(int j=0;j<nums.size();j++)
        {
            if(j>0 && nums[j]==nums[j-1] && nums[j-1]==false)
            {
                continue;
            }
            if(!used[j])
            {
               //cout<<j<<endl;
                used[j]=true;
                mv.push_back(nums[j]);
                backtracing(nums);
                mv.pop_back();
                used[j]=false;
            }
        }
    }
};

 

修改used数组为传进去的参数.还是报错

class Solution {
public:
//关键词:可包含重复数字的序列 nums的排列问题
//排列:一定用到used数组。而且每一层都从0开始遍历,遍历used数组中未标记的
//可重,要先排序,对于横向展开的选择再去重,和组合思路一样
vector<vector<int>>v;
vector<int>mv;
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        vector<bool>used;
        used.resize(nums.size(),false);
        sort(nums.begin(),nums.end());
        backtracing(nums,used);
        return v;

    }
    void backtracing(vector<int> &nums,vector<bool> &used)
    {
        if(mv.size()==nums.size())
        {
            v.push_back(mv);
            
        }
        for(int j=0;j<nums.size();j++)
        {
            if(j>0 && nums[j]==nums[j-1] && nums[j-1]==false)//这个条件是同层的树层去重
            {
                continue;
            }
            if(used[j]==false)
            {
               //cout<<j<<endl;
                used[j]=true;
                mv.push_back(nums[j]);
                backtracing(nums,used);
                mv.pop_back();
                used[j]=false;
            }
        }
    }
};

 修改后正确:

class Solution {
public:
//关键词:可包含重复数字的序列 nums的排列问题
//排列:一定用到used数组。而且每一层都从0开始遍历,遍历used数组中未标记的
//可重,要先排序,对于横向展开的选择再去重,和组合思路一样
vector<vector<int>>v;
vector<int>mv;
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        v.clear();
        mv.clear();
        vector<bool>used;
        used.resize(nums.size(),false);
        sort(nums.begin(),nums.end());//先排序再去重
        backtracing(nums,used);
        return v;

    }
    void backtracing(vector<int> &nums,vector<bool> &used)
    {
        if(mv.size()==nums.size())
        {
            v.push_back(mv);
            
        }
        for(int j=0;j<nums.size();j++)
        {
           if (j > 0 && nums[j] == nums[j - 1] && used[j- 1] == false) {
                continue;
            }
            if(used[j]==false)
            {
                used[j]=true;
                mv.push_back(nums[j]);
                backtracing(nums,used);
                mv.pop_back();
                used[j]=false;
            }
        }
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值