动态规划: 最大子矩阵 (降维打击)

最大子段和

问题:

给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n

例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。

解决方法

动态规划

状态转移方程:dp[n] = max(dp[n-1]+a[n],a[n])

dp[n-1]表示前n-1个元素的序列的以a[n-1]为最后元素的最大子段和(可能是从前n-1个的某个元素连续到第n-1,也可能是孤独的一个a[n-1],前面的全部被抛弃),那么dp[n]的值有两种选择。

  1. 当a[n] 大于dp[n-1](前n-1个元素序列的最大子段和)。此时舍弃前面的子段和,即断开。
  2. 否则的话,把a[n]连接到前n-1个元素序列的最大和子段上,即dp[n] = dp[n-1] + a[n]

最大子矩阵其实是最大子段和的二维情况,最大子段和可以用动态规划解决

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值