Problem Description
给你一个高为n ,宽为m列的网格,计算出这个网格中有多少个矩形,下图为高为2,宽为4的网格.
Input
第一行输入一个t, 表示有t组数据,然后每行输入n,m,分别表示网格的高和宽 ( n < 100 , m < 100).
Output
每行输出网格中有多少个矩形.
Sample Input
2 1 2 2 4
Sample Output
3 30代码一:以2*4的矩形举例:1 3 6 103 9 18 30规律:#include<stdio.h> #include<string.h> using namespace std; const int N = 100; int dp[N+2][N+2]; void init(){ dp[1][0]=0; for(int i=1;i<=100;i++) dp[1][i]=dp[1][i-1]+i; for(int j=2;j<=100;j++) dp[j][1]=dp[j-1][1]+j; } int main(){ int T; scanf("%d",&T); init(); while(T--){ int n,m; scanf("%d%d",&n,&m); printf("%d\n",dp[1][m]*dp[n][1]); } return 0; }
代码二:
分析:如果有1行m列,则总矩形数为m+(m-1)+(m-2)+....+2+1=m*(m-1)/2;如果有n行1列,则总矩形数为n+(n-1)+(n-2)+....+2*1=n*(n-1)/2;则如果有n行m列,总矩形数为 m*(m-1)/2*n*(n-1)/2;
#include<stdio.h> #include<string.h> using namespace std; int main(){ int T; scanf("%d",&T); while(T--){ int n,m; scanf("%d%d",&n,&m); printf("%d\n",m*(m+1)/2*n*(n+1)/2); } return 0; }