Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.
分析
ai | ai+1 | ... | aj | ... | ak−2 | ak−1 | ak |
---|
假设{
ai
,
ai+1
, …,
aj
, …
ak
}是满足要求的最大和子序列maxStr。那么如果maxStr的任一
ai
开头的子序列{
ai
…,
aj
}的和sum{
ai
…,
aj
} < 0,则maxStr的另一子序列sum{
aj+1
…,
ak
} > sum{maxStr}。这与maxStr是最大和子序列矛盾。
因此, maxStr中任一
ai
开头的子序列sum{
ai
…,
aj
}
≥
0.
class Solution {
public:
int maxSubArray(int A[], int n) {
int max = A[0], sum = 0;
for(int i = 0; i < n; i++){
sum += A[i];
if(max < sum)
max = sum;
if(sum < 0)
sum = 0;
}
return max;
}
};