tensorflow深度学习网络的feature map保存为图片

保存feature map就是对你的代码有两个地方修改下就好了。

第一个:

在你的网络搭建的地方,你想保存哪一层的网络,就在那一层后添加代码:

#第一个卷积层(100——>50)
conv1=tf.layers.conv2d(
      inputs=x,
      filters=32,
      kernel_size=[5, 5],
      padding="same",
      activation=tf.nn.relu,
      kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
tf.add_to_collection('activations', conv1)

这里的第一个参数名称你可以随便改,第二个参数就是层变脸的名字。

第二个地方:

在你的训练epoch循环中的batch循环里,添加代码:

for epoch in range(n_epoch):
    start_time = time.time()
    
    #training
    train_loss, train_acc, n_batch = 0, 0, 0
    for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size, shuffle=True):
        _,err,ac=sess.run([train_op,loss,acc], feed_dict={x: x_train_a, y_: y_train_a})
        tra
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值