Flink -- window数据倾斜 解决思路

本文探讨了Flink中窗口数据倾斜的问题及其解决方案。通过两种思路缓解倾斜:一是使用reduce方法在窗口触发前预聚合;二是扩展key,将数据量大的项目负载分散,再进行聚合,最终得到原始逻辑结果。优化后的拓扑图展示了数据处理的改进过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里阐述一下Flink中 window间的数据倾斜的解决思路,不做代码展现

场景:

      分项目统计某个时间粒度的pv数据

数据情况:

每个项目的数据量不同,某个项目的数据量很大,导致这个项目的窗口中的数据很大,发生倾斜

 

解决思路:

思路一:

      针对window原始方式中在窗口触发前,是以数据积攒的方式进行的。所以针对这种方式可以在window后跟一个reduce方法,在窗口触发前采用该方法进行聚合操作(类似于MapReduce 中  map端combiner预处理思路)

 

 

 

思路二:

      思路一种处理后仍有倾斜问题,或者也可以直接采用思路二进行优化、处理。

大致思路:

将key进行扩展,扩展成自定义的负载数,即,将原始的key封装后新的带负载数的key,进行逻辑处理,然后再对新key的计算结果进行聚合,聚合成原始逻辑的结果。

具体实现思路:

1.人为查看具体的倾斜的(数据量大的项目码,例如Code1)

 

 

2.将原始的数据元组中keyby分组的键进行扩展,扩展指定的负载个数

例如:

       优化前:

                 数据元组:(项目码,1) 

<think>好的,用户需要关于大数据开发岗位的简历优化建议。首先,我得结合用户提供的引用内容,特别是引用[3]提到数据库编程是必备技能,所以简历中要突出相关技术。另外,引用[1]和[2]涉及性能调优和数据倾斜处理,这些都是大数据中的关键点,应该作为重点展示。 用户可能希望简历既符合岗位要求,又能突出实际项目经验。需要分结构清晰的部分,比如技术栈、项目经验、优化成果等。要注意使用行业关键词,比如Hadoop、Spark、Flink,这些是简历筛选时的重点。 另外,用户提供的引用中有提到调优前后的对比,比如map个数调整带来的性能提升,这部分在项目描述中应该具体量化,展示实际效果。同时,数据倾斜处理的方法,如FlinkWindow优化,也是值得强调的点,能体现问题解决能力。 可能还需要考虑简历的格式和简洁性,避免冗长,用STAR法则描述项目,突出行动和结果。另外,教育背景和证书部分也要简明扼要,特别是相关的大数据认证,能增加竞争力。 最后,用户可能需要避免常见错误,比如技术栈堆砌而不深入,或者项目描述过于笼统。需要提醒用户量化成果,使用具体数字,并针对不同岗位定制简历,突出相关经验。</think>### 大数据开发岗位简历优化建议 以下从技术展示、项目描述、成果量化等角度提供优化思路,结合行业需求与招聘方关注点: --- #### 一、**技术栈模块:精准匹配岗位关键词** 1. **核心技术分层展示** - 分布式计算框架:$Spark$、$Flink$、$Hadoop$(需标注生态组件如$HDFS/YARN$) - 数据处理工具:$Kafka$、$Hive$、$HBase$ - 编程语言:$Scala$(大数据开发核心语言)、$Python$、$SQL$ - 云平台:$AWS EMR$、$阿里云MaxCompute$(根据投递企业调整) > *示例:熟悉Spark性能调优,包括$shuffle$优化、$RDD$缓存策略[^1]* 2. **避免堆砌技术名词** 重点描述**实际应用场景**,例如: > "使用$Flink$实现实时数据管道,解决$Window$数据倾斜问题(通过两阶段聚合+动态分区)[^2]" --- #### 二、**项目经验:STAR法则+量化成果** 1. **优化类项目模板** - **背景**:原始任务存在$MapReduce$效率低(如单节点处理$2TB$日志) - **行动**:重构为$Spark SQL$,调整$partition$数为$200$,启用$broadcast join$ - **结果**:执行时间从$4.5h$降至$28min$,资源消耗减少$40%$ 2. **故障排查案例** > "发现$Kafka$消费者延迟,通过调整$fetch.min.bytes$与$max.poll.records$参数,将吞吐量提升$3倍$" --- #### 三、**附加亮点:凸显工程化能力** 1. **数据治理经验** - 描述数据质量监控体系设计(如用$Great Expectations$实现校验规则) - 参与过$元数据管理$或$数据血缘追踪$项目 2. **开源贡献** 若有$Spark/Flink$源码研究或$GitHub$项目,需单独列出并附链接 --- #### 四、**避坑指南** 1. **避免笼统描述** - ✖ "使用Hive进行数据分析" - ✔ "构建$Hive$分层数仓(ODS->DWD->DWS),设计$拉链表$处理缓慢变化维" 2. **证书选择** 优先列出$AWS Certified Data Analytics$、$Cloudera CCAH$等含金量高的认证 --- #### 五、**简历模板示例** ```markdown ### 大数据开发工程师 **技术栈** - 流处理: Flink(状态管理、CEP)、Kafka Connect - 性能调优: Spark内存模型、JVM垃圾回收策略 ### 项目经历 **实时风控系统(Flink+Redis)** - 设计基于时间窗口的异常检测规则,QPS达12万/秒 - 使用$布隆过滤器$减少Redis查询压力,降低集群成本35% ``` ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值