Objective-C实现以迭代方式在 O(log n) 时间内计算 x^n 即指数(x, n)算法(附完整源码)

@[toc](Objective-C实现以迭代方式在 O(log n) 时间内计算 x^n 即指数(x, n)算法)
下面是一个使用Objective-C实现的以迭代方式计算
𝑥𝑛x​n
的算法,该算法的时间复杂度为 𝑂(log𝑛)
O(logn)。该实现使用了 快速幂算法(Exponentiation by Squaring),适用于整数指数
𝑛
n。该算法有效地减少了乘法运算的次数,从而提高了计算效率。

完整源码

#import <Foundation/Foundation.h>

// 函数声明:计算x的n次方
这是一个比较复杂的问题,需要先给出具体的数学模型和目标函数。以下是一个可能的实现: 假设我们有 $n$ 组数据 $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$,其中 $x_i$ 和 $y_i$ 都是实数。我们希望找到一个向量 $\mathbf{w}=(w_1, w_2, \cdots, w_n)^T$,使得它能够最大化下面的似然函数: $$L(\mathbf{w})=\prod_{i=1}^n p(y_i|x_i, \mathbf{w})=\prod_{i=1}^n \frac{1}{z}\frac{e^{w_ix_i}}{1+e^{w_ix_i}}$$ 其中 $z=\prod_{i=1}^n (1+e^{w_ix_i})$ 是归一化因子。我们可以将似然函数取对数并加上负号,得到下面的损失函数: $$J(\mathbf{w})=-\sum_{i=1}^n \log\left(\frac{1}{z}\frac{e^{w_ix_i}}{1+e^{w_ix_i}}\right)=\sum_{i=1}^n \log(1+e^{-w_ix_i})-\log z$$ 我们的目标是求出使得 $J(\mathbf{w})$ 最小化的向量 $\mathbf{w}$。为了实现这一点,我们可以使用梯度下降算法或者牛顿法。 首先考虑梯度下降法。我们需要求出损失函数的梯度向量: $$\nabla J(\mathbf{w})=\left(\frac{\partial J(\mathbf{w})}{\partial w_1}, \frac{\partial J(\mathbf{w})}{\partial w_2}, \cdots, \frac{\partial J(\mathbf{w})}{\partial w_n}\right)^T$$ 我们可以使用链式法则求出每个分量的导数: $$\frac{\partial J(\mathbf{w})}{\partial w_i}=\frac{\partial}{\partial w_i} \log(1+e^{-w_ix_i})-\frac{\partial}{\partial w_i} \log z$$ $$=\frac{-x_ie^{-w_ix_i}}{1+e^{-w_ix_i}}-\frac{1}{z}\frac{\partial z}{\partial w_i}$$ 其中: $$\frac{\partial z}{\partial w_i}=\prod_{j=1}^n (1+e^{w_jx_j})\frac{\partial}{\partial w_i}(1+e^{w_ix_i})$$ $$=\prod_{j=1}^n (1+e^{w_jx_j})\cdot e^{w_ix_i}\cdot \frac{x_i}{1+e^{w_ix_i}}$$ 将上式代入前面的式子,得到: $$\frac{\partial J(\mathbf{w})}{\partial w_i}=-x_i\frac{1}{1+e^{w_ix_i}}+\frac{x_ie^{w_ix_i}}{z}=\frac{x_i}{z}(e^{w_ix_i}-y_i)$$ 因此,梯度向量可以写成: $$\nabla J(\mathbf{w})=\left(\frac{x_1}{z}(e^{w_1x_1}-y_1), \frac{x_2}{z}(e^{w_2x_2}-y_2), \cdots, \frac{x_n}{z}(e^{w_nx_n}-y_n)\right)^T$$ 然后我们可以使用标准的梯度下降算法来更新参数: $$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla J(\mathbf{w})$$ 其中 $\eta$ 是学习率。具体的实现细节可以参考下面的代码: ```python import numpy as np # define the objective function def J(w, x, y): z = np.prod(1 + np.exp(w * x)) return np.sum(np.log(1 + np.exp(-w * x))) - np.log(z) # define the gradient of the objective function def grad_J(w, x, y): z = np.prod(1 + np.exp(w * x)) return np.array([x[i] / z * (np.exp(w[i] * x[i]) - y[i]) for i in range(len(x))]) # define the gradient descent algorithm def gradient_descent(x, y, w0, eta, epsilon, max_iter): w = w0 for i in range(max_iter): grad = grad_J(w, x, y) w_new = w - eta * grad if np.linalg.norm(w_new - w) < epsilon: break w = w_new return w # generate some data for testing n = 100 x = np.random.randn(n) w_true = np.random.randn(n) y = 1 / (1 + np.exp(-w_true * x)) + 0.01 * np.random.randn(n) # run the gradient descent algorithm w0 = np.zeros(n) eta = 0.1 epsilon = 1e-6 max_iter = 1000 w_est = gradient_descent(x, y, w0, eta, epsilon, max_iter) # print the results print("True parameters:", w_true) print("Estimated parameters:", w_est) ``` 接下来考虑牛顿法。我们需要求出损失函数的一阶导数和二阶导数: $$\nabla J(\mathbf{w})=\left(\frac{x_1}{z}(e^{w_1x_1}-y_1), \frac{x_2}{z}(e^{w_2x_2}-y_2), \cdots, \frac{x_n}{z}(e^{w_nx_n}-y_n)\right)^T$$ $$\nabla^2 J(\mathbf{w})=\begin{pmatrix} \frac{\partial^2 J(\mathbf{w})}{\partial w_1^2} & \frac{\partial^2 J(\mathbf{w})}{\partial w_1 \partial w_2} & \cdots & \frac{\partial^2 J(\mathbf{w})}{\partial w_1 \partial w_n} \\ \frac{\partial^2 J(\mathbf{w})}{\partial w_2 \partial w_1} & \frac{\partial^2 J(\mathbf{w})}{\partial w_2^2} & \cdots & \frac{\partial^2 J(\mathbf{w})}{\partial w_2 \partial w_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 J(\mathbf{w})}{\partial w_n \partial w_1} & \frac{\partial^2 J(\mathbf{w})}{\partial w_n \partial w_2} & \cdots & \frac{\partial^2 J(\mathbf{w})}{\partial w_n^2} \end{pmatrix}$$ 其中: $$\frac{\partial^2 J(\mathbf{w})}{\partial w_i^2}=\frac{x_i^2 e^{w_ix_i}}{z(1+e^{w_ix_i})^2}$$ $$\frac{\partial^2 J(\mathbf{w})}{\partial w_i \partial w_j}=-\frac{x_ix_je^{w_ix_i}e^{w_jx_j}}{z(1+e^{w_ix_i})(1+e^{w_jx_j})}$$ 牛顿法的迭代公式为: $$\mathbf{w} \leftarrow \mathbf{w} - (\nabla^2 J(\mathbf{w}))^{-1} \nabla J(\mathbf{w})$$ 具体的实现细节可以参考下面的代码: ```python import numpy as np # define the objective function def J(w, x, y): z = np.prod(1 + np.exp(w * x)) return np.sum(np.log(1 + np.exp(-w * x))) - np.log(z) # define the gradient of the objective function def grad_J(w, x, y): z = np.prod(1 + np.exp(w * x)) return np.array([x[i] / z * (np.exp(w[i] * x[i]) - y[i]) for i in range(len(x))]) # define the Hessian matrix of the objective function def hess_J(w, x, y): z = np.prod(1 + np.exp(w * x)) hess = np.zeros((len(w), len(w))) for i in range(len(w)): for j in range(len(w)): if i == j: hess[i, j] = np.sum(x[i]**2 * np.exp(w[i] * x[i]) / (z * (1 + np.exp(w[i] * x[i]))**2)) else: hess[i, j] = -np.sum(x[i] * x[j] * np.exp(w[i] * x[i]) * np.exp(w[j] * x[j]) / (z * (1 + np.exp(w[i] * x[i])) * (1 + np.exp(w[j] * x[j])))) return hess # define the Newton's method algorithm def newton_method(x, y, w0, epsilon, max_iter): w = w0 for i in range(max_iter): grad = grad_J(w, x, y) hess_inv = np.linalg.inv(hess_J(w, x, y)) w_new = w - np.dot(hess_inv, grad) if np.linalg.norm(w_new - w) < epsilon: break w = w_new return w # generate some data for testing n = 100 x = np.random.randn(n) w_true = np.random.randn(n) y = 1 / (1 + np.exp(-w_true * x)) + 0.01 * np.random.randn(n) # run the Newton's method algorithm w0 = np.zeros(n) epsilon = 1e-6 max_iter = 100 w_est = newton_method(x, y, w0, epsilon, max_iter) # print the results print("True parameters:", w_true) print("Estimated parameters:", w_est) ``` 需要注意的是,牛顿法的收敛速度通常比梯度下降法快,但是每次迭代计算量更大。因此,在实际应用中需要根据具体情况选择不同的优化算法和参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码大师

赏点狗粮吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值