二叉树前序中序,后序中序,公共最近祖先的实现
注释中详细介绍了算法,故不再赘述。
无论是前序还是后序,一个节点的左子树和右子树都是可以看做是分开的,有一定规律可循,故可用递归进行实现。
#include <iostream>
#include <cstring>
#include <vector>
using namespace std;
const int len = 12;
char pre[len] = "ABDEHCFIJGK";
char mid[len] = "DBHEAIFJCKG";
typedef struct _Node{
char data;
struct _Node *left;
struct _Node *right;
}TreeNode, *Tree;
// 确定c在中序序列mid中的下标,假设树的各个节点的值各不相同
int position(char c) {
return strchr(mid, c) - mid;
}
/* 利用前序中序序列创建树
* i: 子树的前序序列字符串的首字符在pre[]中的下标
* j: 子树的中序序列字符串的首字符在mid[]中的下标
* len: 子树的字符串序列的长度
*/
void premidCreateTree(Tree &node, int i, int j, int len) {
if(len <= 0) {
node = NULL;
return;
}
node = new TreeNode;
node->data = pre[i];
int m = position(pre[i]);
// i+1 :该node节点的左子树前序序列字符串的首字符在pre[]中的下标
// j :该node节点的左子树中序序列字符串的首字符在mid[]中的下标
// m-j :该node节点的左子树字符串序列的长度
premidCreateTree(node->left, i+1, j, m-j);
// i+(m-j)+1 :该node节点的右子树前序序列字符串的首字符在pre[]中的下标
// m+1 :该node节点的右子树中序序列字符串的首字符在mid[]中的下标
// len-1-(m-j):该node节点的右子树字符串序列的长度
premidCreateTree(node->right, i+(m-j)+1, m+1, len-1-(m-j));
}
// 前序遍历树
void PreTravelTree(Tree &node) {
if(node) {
cout << node->data;
PreTravelTree(node->left);
PreTravelTree(node->right);
}
}
/* 利用后序中序序列创建树
* i: 子树的后序序列字符串的尾字符在post[]中的下标
* j: 子树的中序序列字符串的首字符在mid[]中的下标
* len: 子树的字符串序列的长度
*/
void PostMidCreateTree(PNode &pn, int i, int j, int len) {
if(len <= 0) {
node = NULL;
return;
}
pn = new Node;
pn->v = post[i];
int m = Position(post[i]);
PostMidCreateTree(pn->left, i-1-(len-1-(m-j)), j, m-j);//注意参数:m-j左子树的长度,len-1-(m-j)右子树的长度
PostMidCreateTree(pn->right, i-1, m+1, len-1-(m-j));
}
// 寻找两个节点的最近公共祖先,但是遇到下面这种情况时,会有bug
// A 寻找B,C的公共祖先,不能用此算法
// / \
// B D
// /
// C
int findPNode(Tree root, char a, char b, TreeNode** PNode){
if(root == NULL) return 0;
if(root->data == a || root->data == b) {
return 1;
}
int left = findPNode(root->left, a, b, PNode);
if(left == 2) return 2;
int right = findPNode(root->right, a, b, PNode);
if(right == 2) return 2;
if(left + right == 2) *PNode = root;
return left + right;
}
// 二叉树是普通的二叉树,节点只有left/right,没有parent指针。
//
// 10
// / \
// 6 14
// / \ / \
// 4 8 12 18
// / \
// 3 5
//
// 基本思想:记录从根找到node1和node2的路径,然后再把它们的路径用类似的情况一来做分析,比如还是node1=3,node2=8这个case.
// 我们肯定可以从根节点开始找到3这个节点,同时记录下路径3,4,6,10,类似的我们也可以找到8,6,10。
// 我们把这样的信息存储到两个vector里面,把长的vector开始的多余节点3扔掉,从相同剩余长度开始比较,4!=8, 6==6,我们找到了我们的答案。
bool findParentByVector(TreeNode* root, char NData, vector<TreeNode*>& path) {
if(root == NULL) return false;
if(root->data != NData) {
if(findParentByVector(root->left, NData, path)) {
path.push_back(root);
return true;
} else {
if(findParentByVector(root->right, NData, path)) {
path.push_back(root);
return true;
} else {
return false;
}
}
} else {
path.push_back(root);
return true;
}
}
TreeNode* findBstNode(TreeNode* root, char a, char b) {
vector<TreeNode*> path1;
vector<TreeNode*> path2;
bool find = false;
find |= findParentByVector(root, a, path1);
find &= findParentByVector(root, b, path2);
if(find) {
int minSize = path1.size() > path2.size() ? path2.size() : path1.size();
int th1 = path1.size() - minSize;
int th2 = path2.size() - minSize;
for(; th1 < (int)path1.size() && th2 < (int)path2.size(); th1++, th2++) {
if(path1[th1] == path2[th2]) {
return path1[th1];
}
}
}
return NULL;
}
int main() {
Tree root = NULL;
premidCreateTree(root, 0, 0, strlen(mid));
PreTravelTree(root);
TreeNode *PNode = NULL;
/*findPNode(root, 'D', 'B', &PNode);
cout << endl << PNode->data << endl;*/
PNode = findBstNode(root, 'I', 'G');
cout << endl << PNode->data << endl;
getchar();
return 0;
}