SVM笔记--要点

1 篇文章 0 订阅
[size=x-large][color=blue]0、心得[/color][/size]
[size=large][list]
[*]很多问题能在FAQ中找到:[url]http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html[/url]
[*][b]Grid search[/b]选参数很重要! 在一次训练数据100%正确率,测试数据只有50%多后深有体会,代码见:[url]http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#f803[/url]
[*]无需自己写[b]cross-validation[/b]程序, 用 -v参数即可(但返回值只有正确率了),代码和Grid search链接相同
[*]多类问题,自动支持,有几类设置几种标签即可,采用 1-vs-1的方法,如果要用1-vs-rest,可以参看:[url]http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#f808[/url]
[*]数据unblance问题:通过 -w参数设置权重,具体参见README和[url]http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#f410[/url]
[/list][/size]


[size=large]本文是从LIBSVM的guide中抽出来的要点:[/size][url]http://www.csie.ntu.edu.tw/~cjlin/libsvm/[/url]
[size=x-large][color=blue]1、简介[/color][/size]

[size=x-large][color=blue]2、数据预处理[/color][/size]
[size=large][list]
[*]①特征较少时用one-hot code表示,也即有加入分RGB三种颜色,不要R用1,G用2,B用3表示,而是应该用三维向量 (1,0,0), (0,1,0), (0,0,1)表示这三种颜色。
[*]②特征的scaling问题:建议将特征缩放到区间[-1,1]或[0, 1] (线性地缩放)
[/list][/size]

[size=x-large][color=blue]3、核函数的选择[/color][/size]
[size=large][list]
[*]一般径向基函数(RBF)比较好;
[*]特征维度很高时最好采用Linear kernal
[/list][/size]

[size=x-large][color=blue]4、参数选择--交叉验证和grid搜索[/color][/size]

[size=large][color=red]目标:[/color]在测试数据上取得高的正确率(而非在训练数据上!)
[color=red]k-fold 交叉验证[/color](cross validation):将训练集分为k份,1份做验证,其他k-1份做训练。如此,可以训练k、验证k次,求取平均正确率作为衡量标准。 这样可以有效防止过拟合。

对于参数C和径向基函数的参数γ,可以采用[color=red]由粗到精[/color]的搜索策略。
如先在C=2^-3, 2^-2,..., 2^10; γ=2^-7, ... 2^-3的网格上搜索最优值,
再在其附近的网格内细分网格进行搜索。 (可以并行~~~)

对于大数据集,一个策略是先随机选一部分在粗网格上选取最优参数,再在细化最优参数时对整个训练集进行参数的网格搜索。

选取到最优参数后,再用这组参数重新利用整个训练集进行训练。[/size]

[size=x-large][color=blue]5、适于使用linear核函数而非径向基函数的情况[/color][/size]
[size=large][list]
[*]样本数<<特征维数,
[*]样本数和特征维数都很大,适于使用LIBLINEAR工具箱(比LIBSVM快很多)。
[*]样本数>>特征维数,适于使用LIBLINEAR工具箱。
[/list][/size]
[size=large]LIBLinear工具箱:[/size][url]http://www.csie.ntu.edu.tw/~cjlin/index.html[/url]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值