重现那款曾经为之痴迷的游戏[2] -- 程序基本框架

本文分享了一款游戏服务器的架构设计思路和技术选型,包括采用IOCP实现网络服务器,支持高达5万个连接,以及使用Direct3D9.0和自定义XML脚本等客户端技术。对于对游戏开发感兴趣的读者来说,这是一个不错的参考案例。
资源的问题解决了,那么接下来就要搭建程序基本框架了。

网络服务器


服务器部分,就是一个Windows服务,网络处理部分就采用IOCP了,我自己开发的这套IOCP类,不考虑重负荷下的吞吐率以及网络带宽影响的话,单台PC服务器能够达到5W的连接。这游戏是自己玩,就没必要做的那么复杂,单服务器就足够了。支持几千人同时在线已经很不错了。这里不讨论具体的技术细节了,有兴趣的朋友可以去我另一个博客看技术性的介绍。

客户端

一切从简,一切从简。客户端也是简单之极啊。
Direct 3D9.0 使用DXUT简易框架搭建
脚本就用XML,XML使用的是自己的开源封装库,在这里打一下广告。(http://www.codeproject.com/KB/XML/JW_CXml.aspx)
音频就用DirectMusic DirectSound
定义好脚本的规则,基本上就搭建完成了




如果您曾经是此款游戏的策划或者开发人员,并偶然看见此文章,请与我联系,我缺乏很多数值设计的资料

内容概要:本文详细介绍了一个基于CNN-GRU与AdaBoost集成的深度学习模型在时间序列预测中的完整项目实现。该模型通过卷积神经网络(CNN)提取局部时空特征,利用门控循环单元(GRU)捕捉长期时序依赖,并结合AdaBoost自适应提升算法增强模型泛化能力与鲁棒性,有效应对非线性、噪声干扰和复杂动态变化的挑战。项目涵盖从数据生成、预处理、模型构建、训练优化到结果可视化和GUI交互界面开发的全流程,提供了完整的代码示例与模块化系统架构设计,支持金融、能源、交通、医疗等多个领域的高精度预测应用。; 适合人群:具备一定Python编程基础和机器学习知识,熟悉深度学习框架(如TensorFlow/Keras)的数据科学家、算法工程师及高校研究人员,尤其适合从事时间序列分析、智能预测系统开发的相关从业者。; 使用场景及目标:①实现高精度时间序列预测,如股票价格、电力负荷、交通流量等;②构建具备强鲁棒性和抗噪能力的工业级预测系统;③开发集成深度学习与集成学习的复合模型以提升预测稳定性;④通过GUI界面实现模型的便捷部署与交互式分析。; 阅读建议:建议读者结合文档中的代码逐步实践,重点关注数据预处理、模型集成机制与可视化模块的设计逻辑,同时可在不同数据集上进行迁移实验,深入理解CNN-GRU与AdaBoost协同工作的原理与优势。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值