Hadoop之道--MapReduce之Hello World实例wordcount

Hadoop版本:1.1.2

集成开发平台:Eclipse SDK 3.5.1

原创作品,转载请标明:http://blog.csdn.net/yming0221/article/details/9013381


1. 首先定义DFS Location(具体的环境搭建请看前面的博文)



2.下面即是Hello World实例

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class wordcount {

  public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{
    
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
      
    public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
    	
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }
  
  public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }

  public static void main(String[] args) throws Exception {
	  
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length != 2) {
      System.err.println("Usage: wordcount <in> <out>");
      System.exit(2);
    }
    
    Job job = new Job(conf, "word count");
    job.setJarByClass(wordcount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

3. 运行结果

13/06/03 14:45:52 INFO input.FileInputFormat: Total input paths to process : 2
13/06/03 14:45:52 WARN snappy.LoadSnappy: Snappy native library not loaded
13/06/03 14:45:52 INFO mapred.JobClient: Running job: job_local_0001
13/06/03 14:45:52 INFO util.ProcessTree: setsid exited with exit code 0
13/06/03 14:45:52 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@2b96021e
13/06/03 14:45:52 INFO mapred.MapTask: io.sort.mb = 100
13/06/03 14:45:53 INFO mapred.MapTask: data buffer = 79691776/99614720
13/06/03 14:45:53 INFO mapred.MapTask: record buffer = 262144/327680
13/06/03 14:45:53 INFO mapred.MapTask: Starting flush of map output
13/06/03 14:45:53 INFO mapred.MapTask: Finished spill 0
13/06/03 14:45:53 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
13/06/03 14:45:53 INFO mapred.LocalJobRunner: 
13/06/03 14:45:53 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done.
13/06/03 14:45:53 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@3621767f
13/06/03 14:45:53 INFO mapred.MapTask: io.sort.mb = 100
13/06/03 14:45:53 INFO mapred.MapTask: data buffer = 79691776/99614720
13/06/03 14:45:53 INFO mapred.MapTask: record buffer = 262144/327680
13/06/03 14:45:53 INFO mapred.MapTask: Starting flush of map output
13/06/03 14:45:53 INFO mapred.MapTask: Finished spill 0
13/06/03 14:45:53 INFO mapred.Task: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
13/06/03 14:45:53 INFO mapred.LocalJobRunner: 
13/06/03 14:45:53 INFO mapred.Task: Task 'attempt_local_0001_m_000001_0' done.
13/06/03 14:45:53 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@76d6d675
13/06/03 14:45:53 INFO mapred.LocalJobRunner: 
13/06/03 14:45:53 INFO mapred.Merger: Merging 2 sorted segments
13/06/03 14:45:53 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 53 bytes
13/06/03 14:45:53 INFO mapred.LocalJobRunner: 
13/06/03 14:45:53 INFO mapred.JobClient:  map 100% reduce 0%
13/06/03 14:45:53 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
13/06/03 14:45:53 INFO mapred.LocalJobRunner: 
13/06/03 14:45:53 INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to commit now
13/06/03 14:45:53 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to output
13/06/03 14:45:53 INFO mapred.LocalJobRunner: reduce > reduce
13/06/03 14:45:53 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.
13/06/03 14:45:54 INFO mapred.JobClient:  map 100% reduce 100%
13/06/03 14:45:54 INFO mapred.JobClient: Job complete: job_local_0001
13/06/03 14:45:54 INFO mapred.JobClient: Counters: 22
13/06/03 14:45:54 INFO mapred.JobClient:   File Output Format Counters 
13/06/03 14:45:54 INFO mapred.JobClient:     Bytes Written=25
13/06/03 14:45:54 INFO mapred.JobClient:   FileSystemCounters
13/06/03 14:45:54 INFO mapred.JobClient:     FILE_BYTES_READ=18029
13/06/03 14:45:54 INFO mapred.JobClient:     HDFS_BYTES_READ=63
13/06/03 14:45:54 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=213880
13/06/03 14:45:54 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=25
13/06/03 14:45:54 INFO mapred.JobClient:   File Input Format Counters 
13/06/03 14:45:54 INFO mapred.JobClient:     Bytes Read=25
13/06/03 14:45:54 INFO mapred.JobClient:   Map-Reduce Framework
13/06/03 14:45:54 INFO mapred.JobClient:     Reduce input groups=3
13/06/03 14:45:54 INFO mapred.JobClient:     Map output materialized bytes=61
13/06/03 14:45:54 INFO mapred.JobClient:     Combine output records=4
13/06/03 14:45:54 INFO mapred.JobClient:     Map input records=2
13/06/03 14:45:54 INFO mapred.JobClient:     Reduce shuffle bytes=0
13/06/03 14:45:54 INFO mapred.JobClient:     Physical memory (bytes) snapshot=0
13/06/03 14:45:54 INFO mapred.JobClient:     Reduce output records=3
13/06/03 14:45:54 INFO mapred.JobClient:     Spilled Records=8
13/06/03 14:45:54 INFO mapred.JobClient:     Map output bytes=41
13/06/03 14:45:54 INFO mapred.JobClient:     CPU time spent (ms)=0
13/06/03 14:45:54 INFO mapred.JobClient:     Total committed heap usage (bytes)=683409408
13/06/03 14:45:54 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=0
13/06/03 14:45:54 INFO mapred.JobClient:     Combine input records=4
13/06/03 14:45:54 INFO mapred.JobClient:     Map output records=4
13/06/03 14:45:54 INFO mapred.JobClient:     SPLIT_RAW_BYTES=226
13/06/03 14:45:54 INFO mapred.JobClient:     Reduce input records=4

文件输出结果:

hadoop	1
hello	2
world	1

4. 结果分析

4.1 首先文件会被切割成splits,大文件切割成小文件块,这里文件都很小,一个文件就是一个split,然后将文件按行分割,分割成<key,value>对。该步骤是由MapReduce自动完成。如下图

4.2 将上面的<key,value>对交给用户定义的map处理,生成<key1,value1>键值对


4.3 得到<key1,value1>后Mapper会按照key1对其进行排序。如果定义了Combine函数,将会对这些排序后的相同的键值对进行合并。然后进行交给Reducer。一般情况下该函数和reduce函数设置成相同的。得到<key2,value2>键值对


4.4 生成的中间结果交给Reduce处理,Reduce端首先把收来的数据进行排序,生成<key3,list(value3)>键值(可能是多个)对,然后交给用户定义的reduce函数处理。最后生成最后的<key4,value4>键值对,并输出到DFS文件中。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值