MapReduce中的HelloWorld,安排一下?

这篇博客介绍了MapReduce的实战应用,通过WordCount案例详细讲解了如何使用MapReduce统计文件中单词出现的次数。内容包括编写Mapper、Reducer和Driver三个关键步骤,适合初学者入门。
摘要由CSDN通过智能技术生成

相信绝大多数程序员在看到 HelloWorld这个词的时候,总会情不自禁的翘起嘴角吧!虽然早已离开了校园,但每每看到这个词,我总会自然而然地想起曾经和我的那群“狐朋狗友”在大学里肆无忌惮敲代码的日子。。。
似乎有点跑题了(尴尬脸),看了上篇的原理,是不是手痒,想来操作一下了!
https://blog.csdn.net/Forever_ck/article/details/84589932
下面我们就来看看MapReduce里的“helloworld”,也就是WorldCount。
先来看下需求: 统计一堆文件中单词出现的个数
分析:
首先我们需要准备一点数据,并按照 mapreduce 编程规范,分别编写 Mapper,Reducer,Driver。

一、编写 mapper 类

package com.ck

import java.io.IOException;import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{ 
   
   Text k = new Text();
   IntWritable v = new IntWritable(1);

 @Override
 protected voi
Hadoop MapReduceHello World实验目的是为了让用户了解Hadoop MapReduce的基本概念和使用方法。通过这个实验,用户可以学习如何编写一个简单的MapReduce程序,并将其部署到Hadoop集群上运行。这个实验可以帮助用户更好地理解Hadoop MapReduce的工作原理和应用场景。 以下是Hadoop MapReduceHello World实验步骤: 1. 编写MapReduce程序,包括Mapper和Reducer。 2. 将程序打包成jar文件。 3. 将输入数据上传到Hadoop分布式文件系统(HDFS)。 4. 运行MapReduce程序。 5. 查看输出结果。 以下是一个简单的Hadoop MapReduceHello World实验程序: ```java import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { String[] words = value.toString().split(" "); for (String w : words) { word.set(w); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值