Flash CS3制作Fla形式的组件

 本文为大家介绍如何制作Flash CS3中的[*.fla]形式的的组件(Component)。这种组件和SWC组件不同,它和CS3自带的组件一样能够双击进入组件里面编辑,是Flash CS3新增加的一种组件形态。下面我们制作一个MyButton组件为例子。

  制作步骤: Webjx.Com

  1、首先创建一空白的ActionScript3.0的flash文档,然后保存文件命名为:"FLA_ComponentX".//名称可以任意。 Webjx.Com

  2、CTRL+F8,新建一空白剪辑,取名为"Avatar",进入编辑,第一真上我们画一矩形框(Stroke style我们选择"hairline",最细的线条),不用填充,一定要记得设置坐标为(0,0),位置固定的. Webjx.Com

  3、CTRL+F8,继续新建个空白剪辑,取名为"NormalSkin",点开高级设置,把"导出ActionScript","导出到第一真"两项打勾,class中填入"NormalSkin",最后把"启动9-scale缩放的引导线"选项打勾,最后确定,进入编辑,画一填充圆角矩形,设置颜色为灰色,摆放位置(0,0),可以拖动9-scale缩放的引导线,如图对齐,作用是让圆角矩形进行所放的时候保持四个定位的角不变形,这个矩形用来做按钮的普通模式的皮肤.

 

  4、CTRL+F8,继续新建个空白剪辑,同上,取名为"OverSkin",点开高级设置,把"导出ActionScript","导出到第一帧"两项打勾,class中填入"OverSkin",最后把"启动9-scale缩放的引导线"选项打勾,最后确定,进入辑,画一填充圆角矩形,设置颜色为红色,摆放位置(0,0),这个矩形用来做按钮的鼠标经过模式的皮肤.

Webjx.Com


  5、CTRL+F8,新建个空白剪辑(这下我们建立的就是最终的按钮组件,上面建立的都是这按钮的组成部分),取名为"MyButton",点开高级设置,把"导出ActionScript","导出到第一真"两项打勾,class中填入"MyButton",然后确定,进入编辑,第一层取名为"avatar",然后第一帧上我们从库中把"Avatar"元件拖放到场景中,放置到(0,0)位置,这一真的内容在我们最后运行组件的时候是看不到的,作用主要是用来控制整个组件的宽高.然后我们新建立一层,取名"skins",在第二帧上我们把库中的"NormalSkin"和"OverSkin"组件拖进来,位置可以随意摆放,这上面的元件是我们将来使用组件的时候,双击进入能够进行设置的.

Webjx.Com


  6、点中库中的"MyButton"元件,右键菜单中选"Component Definition"(组件定义)选项,会进入一窗口,把类名填上"MyButton",再把"diaplay in Components panel"选项打上钩,"Tool tiptext"中填入组件名称,我这里填"MyButton".这里还有设置组件的preview(预览)效果还有图标等,其他内容大家可根据需要自行设置。

   Webjx.Com

  7、到这步,我们会发现还缺少一个外部的自定义组件的代码,也就是上面"MyButton"元件连接的"MyButton"类.由于类中导入了组件类,所以我们要设置FLASH CS3的classPath(类路径),选编辑-->参数设置-->ActionScript-->ActionScript3.0,添加一新的类搜索路径,我这里为"D:\Program Files\Adobe\Adobe Flash CS3\en\Configuration\Component Source\ActionScript 3.0\User Interface"

  大家根据各自情况设置好路径,新建ActionScript文档,填入如下代码:

  /************MyButton.as**************/

package{
import flash.display.*;
import flash.events.*;
import flash.system.ApplicationDomain;
import fl.core.UIComponent;
public class MyButton extends UIComponent {
  private var nowSkin:MovieClip;
  private var thisDomain:ApplicationDomain;
  public function MyButton() {
   super();
   trace("MyButton");
  }
  override protected function draw():void {
   if (nowSkin==null) {
    thisDomain=loaderInfo.applicationDomain;
    var classDef
    try{
    classDef=thisDomain.getDefinition(getNormalSkinName());}
    catch(e:ReferenceError){
     trace("没有在库中找到相关的类!")
     return;
     }
    nowSkin=new classDef as MovieClip;
    nowSkin.addEventListener(MouseEvent.MOUSE_OVER,mouseOverHandler);
    addChild(nowSkin);
   }
   nowSkin.width=width;
   nowSkin.height=height;
  }
  protected function mouseOverHandler(e:MouseEvent):void{
   trace("over");
   removeChild(nowSkin);
   var classDef=thisDomain.getDefinition(getOverSkinName());
   nowSkin=new classDef as MovieClip;
   addChild(nowSkin);
   nowSkin.addEventListener(MouseEvent.MOUSE_OUT,mouseOutHandler);
   draw();
  }
  protected function mouseOutHandler(e:MouseEvent):void{
网页教学网

   trace("out");
   removeChild(nowSkin);
   var classDef=thisDomain.getDefinition(getNormalSkinName());
   nowSkin=new classDef as MovieClip;
   addChild(nowSkin);
   nowSkin.addEventListener(MouseEvent.MOUSE_OVER,mouseOverHandler);
   draw();
  }
  protected function getNormalSkinName():String {
   return "NormalSkin";
  }
  protected function getOverSkinName():String {
   return "OverSkin";
  }

}
}

  代码对我们建立的按钮组件进行一些设置,我这里只简单设置了鼠标经过和离开。接着保存,名为"MyButto.as",位于我们上面建立的"FLA_ComponentX.fla"同目录下。

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来流媒体的传输、处理等任务,并对系统性能出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组,一个生器和一个判别器,它们相互竞争,生器生数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组,一个生器和一个判别器,它们相互竞争,生器生数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组,一个生器和一个判别器,它们相互竞争,生器生数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值