从360与TX之争看互联网的未来

在360与TX的激烈竞争中,TX要求用户在使用QQ与360间作出选择,此举引发广泛讨论。文章呼吁企业和政府应更加关注用户权益和社会责任,同时强调中国互联网领域法律法规建设的重要性。

  360与TX之间的斗争愈演愈烈,今天TX终于使出了杀手锏--“致广大QQ用户的一封信”,信中大致意思是“你想用QQ就得把360缷载了,要用360就别用QQ,我们两个是仇家”,这一招的确够狠,很显然在此点上TX占上风,360处于劣势。

  网民该如何决择?我想对于大部分的网民,都难取舍。

  先不说谁对谁错,只要有一点社会责任心,有一点道德的企业,都不应该把网民或者用户当“鱼肉”宰来宰去。中国的互联网起步晚,相关法律法规又不健全。企业就不能加强一下自律,树立一个好的形象吗?

  有一些缺乏自律的企业就在暗处干起了见不得人的勾当,良心何在?可是,不管出于什么原因,见不得人的勾当爆光了,谁都不应该把后果转嫁到网民身上,网民是无辜的。

  360前身不好,大家都知道,但是现在的360跟以前的3721大不一样了,它在互联网安全相关领域多多少少做出了一些贡献。TX也不错,对中国的即时通讯的发展功不可没。

  目前的中国,最欠缺的是法律,俗话说得好,无规矩不成方圆,互联网是个很广的领域,几乎渗透到各行各业了,任何行业现在都离不开互联网,这已是事实。然而互联网相关的法律法规总不跟不上来,象蜗牛一样慢慢的爬啊爬。。。

  在企业或ZF当中,只要一出现什么负面新闻了,就通过公关啊,墙啊什么的来解决。长此以往,网将不网!

  在中国,做网民还真是件不容易的事啊!

  有一个笑话,说的是一位国人要移民到他国,移民局的人就问他:“你对本国的工作,医疗,环境等不满意吗?”,他回答道:“都满意”。移民局的人就不解了,就再问:“那你为什么要移民呢?”,出乎意料,他的答案竟是“他国允许说不”。

  这样的笑话,对当今的社会,是个大大的讽刺。

  对于普通的网民,是相当的无赖。。。

一、插件概述 3ds Max 智能材质检查器是一款专为3D艺术家和场景制作人员设计的高效工具,能够快速检测、诊断和修复场景中的材质贴图问题。在复杂的3D制作流程中,材质丢失和贴图路径错误是常见的技术难题,本插件通过智能扫描和精准定位,大幅提升了场景管理的效率和可靠性。 二、 核心功能特色 1、全面材质检测系统 插件支持对整个场景或选定对象进行深度扫描,精准识别两类关键问题:完全缺失材质的模型对象和贴图文件丢失的材质。检测范围涵盖标准材质和多维子材质,确保不遗漏任何材质问题。 2、智能对象标识定位 每个检测到的问题都会清晰显示对应的模型ID号、对象名称及具体问题描述。用户可以通过双击列表项快速选择问题对象,或使用"聚焦对象"功能将视图自动对准到选定模型,实现精准的问题定位。 3、多通道贴图检测 除了基本的漫反射贴图外,插件还全面检测环境光、高光、光泽度、自发光、不透明度、凹凸、反射、折射等多个贴图通道,确保材质设置的完整性。 4、一键修复解决方案 针对贴图丢失问题,插件提供智能修复功能。用户只需选择包含正确贴图的文件夹,系统即可自动匹配并修复所有丢失的贴图路径,支持标准材质和多维子材质的批量处理。 5、实时统计反馈 界面底部实时显示场景统计信息,包括总对象数量、发现问题数量、无材质对象数量和贴图丢失数量,让用户对场景状态一目了然。 三、技术优势 本插件采用稳定的MAXScript开发,具有轻量级、易用性强和兼容性好的特点。通过对象handleID的唯一标识机制,确保即使在复杂场景中也能准确追踪每个问题对象。优化的算法保证了在大规模场景中的检测效率,同时详细的问题分类为后续的问题解决提供了明确的方向。 四、应用场景 该插件特别适用于场景整理、文件归档、团队协作交接、渲染前检查等关键环节,是3D制作流程中不可或缺的质量控制工具,能够有效避免因材质问题导致的渲染错误和工作延误
内容概要:本文围绕“基于高斯 Copula 框架下相位数据的传递熵基于高斯 Copula 框架下相位数据的传递熵分解研究(Matlab代码实现)分解研究”展开,结合Matlab代码实现,探讨了如何利用高斯Copula模型对相位数据间的非线性依赖关系进行建模,并在此基础上实现传递熵的分解,以量化变量之间的信息流向贡献度。该方法在金融时间序列分析、脑电信号处理、气候系统因果推断等领域具有重要应用价值。文中提供了完整的Matlab代码实现流程,涵盖数据预处理、Copula建模、熵计算分解等关键步骤,便于读者复现和拓展。此外,文档还列举了多个相关研究主题,如多目标优化算法在柔性作业车间调度中的对比、无人机路径规划、微网优化调度等,展示了Matlab在科研仿真中的广泛应用场景。; 适合人群:具备一定统计学、信息论Matlab编程基础的研究生、科研人员及工程技术人员,尤其适合从事复杂系统因果分析、金融风险建模或信号处理方向的研究者。; 使用场景及目标:①掌握基于Copula的非线性依赖建模方法;②理解传递熵的基本原理及其在相位数据中的分解技术;③通过Matlab代码实操提升对高斯Copula框架下信息流动分析的能力;④借鉴文中提供的多种优化算法仿真案例,拓展自身课题的建模思路工具应用。; 阅读建议:建议读者先熟悉Copula函数传递熵的基础理论,再结合Matlab代码逐模块调试运行,重点关注数据标准化、联合分布构建熵值计算部分。同时可参考文档中列出的相关研究方向,寻找交叉创新点,提升科研效率深度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值