[img]http://dl.iteye.com/upload/attachment/0078/3025/d5af3a03-b510-381b-bfb1-cbbc933d4779.png[/img]
二叉树
在计算机科学中,树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构。二叉树是每个节点最多有两个子树的有序树。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。[color=red]值得注意的是,二叉树不是树的特殊情形。在图论中,二叉树是一个连通的无环图,并且每一个顶点的度不大于3。有根二叉树还要满足根结点的度不大于2。有了根结点后,每个顶点定义了唯一的根结点,和最多2个子结点。然而,没有足够的信息来区分左结点和右结点。 [/color]
[color=red]辨析:
尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。
树和二叉树的2个主要差别:
1. 树中结点的最大度数没有限制,而二叉树结点的最大度数为2;
2. 树的结点无左、右之分,而二叉树的结点有左、右之分。[/color]
二叉排序树,二叉搜索树,二叉查找树是同一个概念,不同的称呼而已。
In computer science, a binary search tree (BST), which may sometimes also be called an ordered or sorted binary tree.
二叉排序树(Binary Sort Tree)又称二叉查找树。 它或者是一棵空树;或者是具有下列性质的二叉树: (1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值; (2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值; (3)左、右子树也分别为二叉排序树
平衡二叉树
平衡二叉树(Balanced Binary Tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。构造与调整方法 平衡二叉树的常用算法有红黑树、AVL、Treap、伸展树等。 最小二叉平衡树的节点的公式如下 F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的数列,可以参考Fibonacci数列 1是根节点 F(n-1)是左子树的节点数量 F(n-2)是右子数的节点数量。
平衡二叉搜索(排序)树=平衡二叉树+二叉排序树
我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度(O(log2n))同时也由此而决定。[color=red]但是,在某些极端的情况下(如在插入的序列是有序的时),二叉搜索树将退化成近似链或链,此时,其操作的时间复杂度将退化成线性的,即O(n)。[/color]我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉。这同时也会造成树的平衡性受到破坏,降低它的操作的时间复杂度。
平衡二叉搜索树(Balanced Binary Tree)具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。常用算法有红黑树、AVL、Treap、伸展树等。在平衡二叉搜索树中,我们可以看到,[color=red]其高度一般都良好地维持在O(log2n),大大降低了操作的时间复杂度。[/color]
二叉树
在计算机科学中,树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构。二叉树是每个节点最多有两个子树的有序树。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。[color=red]值得注意的是,二叉树不是树的特殊情形。在图论中,二叉树是一个连通的无环图,并且每一个顶点的度不大于3。有根二叉树还要满足根结点的度不大于2。有了根结点后,每个顶点定义了唯一的根结点,和最多2个子结点。然而,没有足够的信息来区分左结点和右结点。 [/color]
[color=red]辨析:
尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。
树和二叉树的2个主要差别:
1. 树中结点的最大度数没有限制,而二叉树结点的最大度数为2;
2. 树的结点无左、右之分,而二叉树的结点有左、右之分。[/color]
二叉排序树,二叉搜索树,二叉查找树是同一个概念,不同的称呼而已。
In computer science, a binary search tree (BST), which may sometimes also be called an ordered or sorted binary tree.
二叉排序树(Binary Sort Tree)又称二叉查找树。 它或者是一棵空树;或者是具有下列性质的二叉树: (1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值; (2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值; (3)左、右子树也分别为二叉排序树
平衡二叉树
平衡二叉树(Balanced Binary Tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。构造与调整方法 平衡二叉树的常用算法有红黑树、AVL、Treap、伸展树等。 最小二叉平衡树的节点的公式如下 F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的数列,可以参考Fibonacci数列 1是根节点 F(n-1)是左子树的节点数量 F(n-2)是右子数的节点数量。
平衡二叉搜索(排序)树=平衡二叉树+二叉排序树
我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度(O(log2n))同时也由此而决定。[color=red]但是,在某些极端的情况下(如在插入的序列是有序的时),二叉搜索树将退化成近似链或链,此时,其操作的时间复杂度将退化成线性的,即O(n)。[/color]我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉。这同时也会造成树的平衡性受到破坏,降低它的操作的时间复杂度。
平衡二叉搜索树(Balanced Binary Tree)具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。常用算法有红黑树、AVL、Treap、伸展树等。在平衡二叉搜索树中,我们可以看到,[color=red]其高度一般都良好地维持在O(log2n),大大降低了操作的时间复杂度。[/color]