时间序列分段算法 [Time series Breakout Detection]

时间序列分析中的断点检测用于识别系统变化事件。通过线性回归拟合时序数据,转折点标记为断点。算法采用动态规划优化,实际应用于股票价格时序,展示断点检测效果。核心技术包括单变量线性回归和动态规划,复杂度为O(n * n * n)。
摘要由CSDN通过智能技术生成

在时间序列分析中,断点检测(breakout detection)是一个很基本的问题。

通过捕捉时序数据中的断点(breakout),来发现时序数据所表示的系统在过去是否发生了某种事件(event),进而为系统诊断提供必要的数据支持。

 

为了实现对时序断点的检测,我们首先需要对时序的整体时序做拟合。

这里我们通过一条直线来拟合一段时序,如果时序的趋势发生了变化,则用多条直线来拟合整条时序数据。

如下是对一条波动规律明显的时序做拟合之后的结果。

每个红色线条的转折点,就是我们找到的断点。

 

以上数据是我们在实验环境下,为了检测算法效果而人工构造的一条时序。

那么,该算法在实际情况下表现如何?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值